Input, accumulation, and residence times of carbon, nitrogen, and phosphorus in four Rocky Mountain coniferous forests

1989 ◽  
Vol 19 (4) ◽  
pp. 489-498 ◽  
Author(s):  
Cindy E. Prescott ◽  
John P. Corbin ◽  
Dennis Parkinson

Annual aboveground litterfall in forests of Pinuscontorta Loud., Piceaglauca (Moench) Voss, Piceaengelmannii Parry ex Engelm., and Abieslasiocarpa (Hook.) Nutt. in southwestern Alberta ranged from 286 to 321 g•m−2•year−1. The mass of litter accumulated on the forest floors ranged from 6.3 to 11.0 kg•m−2. Residence times of organic matter in the forest floor were 11 years in a 90-year-old P. contorta stand, 16 years in a 120-year-old P. glauca–P. contorta stand, and 23 years in a 350-year-old P. engelmannii–A. lasiocarpa stand. Residence times of litter in the L layer of the forest floor were longer in a recently clearcut area than in the older forests. Residence times of individual nutrients in the forest floors were in the order N > P > C. Litter in the pine forest had lower concentrations of both N and P than did litter in the spruce–pine forest; litter in the spruce–fir forest had relatively high N and low P concentrations. Differences in nutrient concentrations of litter among sites reflected differences in the nutrient-use efficiency of the vegetation, suggesting that the species composition of vegetation is important in determining availability of nutrients in the floor of these forests.

1992 ◽  
Vol 22 (4) ◽  
pp. 593-600 ◽  
Author(s):  
Cindy E. Prescott ◽  
John P. Corbin ◽  
Dennis Parkinson

Nutrient supply rate and limitation were measured in forest floors of lodgepole pine, white spruce–lodgepole pine, and Engelmann spruce–subalpine fir (pine, spruce, and fir forests, respectively) forests in the Kananaskis Valley of southwestern Alberta. Earlier analyses of the nutrient content of foliage and litter indicated low N and P supply in the pine forest, high P supply in the spruce forest, and high N–low P supply in the fir forest. Measurements of nutrient supply (insitu rates of net mineralization, extractable P, and uptake of N and P from the forest floor in pot trials) confirmed the differences in N and P supply among the forests and indicated that nutrient concentrations in needle litter were useful as an index of nutrient supply rate. Subtractive tests were useful in identifying the most limiting nutrients in each forest: lodgepole pine seedlings grown in forest floor material from the pine and spruce stands responded with increased growth to the addition of N; those in fir forest floor material responded to P addition. Vector analysis of N and P concentrations and contents in needles from trees fertilized with ammonium phosphate sulphate showed responses to both N and P in the pine site, no response at the spruce site, and response to P at the fir site.


2013 ◽  
Vol 59 (No. 6) ◽  
pp. 230-237 ◽  
Author(s):  
D. Kacálek ◽  
D. Dušek ◽  
J. Novák ◽  
J. Bartoš

To keep forest soils fertile, forest practitioners plant mixed stands that are composed of both economically efficient trees such as conifers and soil-improving broadleaves. This is a mandated practice in the Czech Republic. As the new forest grows, it creates a dense canopy. The canopy is a principal source of organic matter to the forest soil. The formation of new forest humus is particularly important in first-generation forests on the former agricultural soil. Former meadow is a suitable site for forest floor and soil investigation since forest-floor humus covering the surface of the soil is a completely new layer.&nbsp; Both pure evergreen conifer and mixed treatments were planted in 2001. The experimental plot was established in order to investigate performance of tree species and restoration of forest-site conditions. We sampled dead-plant material and 0&ndash;10 cm topsoil to investigate their properties under the 10-year-old stands. We compared the treatments by descriptive statistics using both univariate and multivariate techniques. Dry mass (medians of weight) varied among the treatments from 11 to 19 Mg&middot;ha<sup>&ndash;1</sup>. The forest floor nutrient concentrations appeared to be dependent on the presence of admixed deciduous tree species (sycamore maple, small-leaved linden and European larch) as these forest floors (EL1, EL2, NS3, SM) were higher in base cations and phosphorus compared to pure spruce (NS1, NS2) and pure Douglas fir (DF) treatments. The first axis of PCA ordination plot revealed 45% of total variability and showed a clear distinction between evergreen coniferous and mixed species treatments. Young plantations produced forest floors of different quality; however it was not reflected in the topsoil properties. &nbsp;


1989 ◽  
Vol 19 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Cindy E. Prescott ◽  
John P. Corbin ◽  
Dennis Parkinson

Aboveground biomass, annual production, and internal nitrogen and phosphorus dynamics of vegetation were compared among a 90-year-old Pinuscontorta Loudon forest, a 120-year-old Piceaglauca (Moench) Voss–P. contorta forest, a 350-year-old Piceaengelmannii Parry ex Engelm.–Abieslasiocarpa (Hook.) Nutt. forest, and a 13-year-old P. contorta stand in the Rocky Mountains of southwestern Alberta. Aboveground biomass of vegetation ranged from 109 to 203 t•ha−1, while aboveground net primary productivity ranged from 4.4 to 5.3 t•ha−1•year−1 in the mature forests. Approximately 30% of the N and 20–40% of the P in ground vegetation were reabsorbed during senescence; 40–50% of the N and 50–80% of the P were reabsorbed from senescing tree foliage. Annual uptake of nutrients (production minus reabsorption) was between 1.8 and 2.2 g•m−2•year−1 for N and 0.2–0.4 g•m−2•year−1 for P. Efficiency of nutrient use (milligrams of new biomass produced per milligram of nutrient taken up in 1 year) ranged from 249 to 262 for N and 1604 to 2355 for P in the mature forests, and 72 and 642, respectively, in the young pine stand. Both N and P were used very efficiently in the pine forest and relatively inefficiently in the spruce–pine forest, reflecting differences in the inherent nutrient-use efficiency of these tree species. In the spruce–fir forest, N was used less efficiently and P more efficiently than in other forests, in response to lower phosphorus availability in this forest. Differences in nutrient-use efficiency of vegetation were related to differences in the amount of biomass produced per unit amount of N or P taken up, and not to differences in efficiency of N or P reabsorption.


2017 ◽  
Vol 47 (10) ◽  
pp. 1418-1423 ◽  
Author(s):  
Cindy E. Prescott ◽  
Kirsten Corrao ◽  
Anya M. Reid ◽  
Jenna M. Zukswert ◽  
Shalom D. Addo-Danso

Estimates of decomposition rates of coarse woody debris (CWD) and fluxes of nutrients therein are essential components of carbon (C) and nutrient budget models. In a 30-year field experiment, we periodically measured mass remaining and nutrient concentrations in log segments of pine, spruce, and fir in natural, mature coniferous forests in Alberta, Canada. The predicted turnover times (t95; years) were 43–44 years for pine, 42–60 years for spruce, and 38–46 years for fir. Extrapolating from best-fit models, we predict that decomposition of these logs would be complete within 50–60 years. The ratio of carbon to nitrogen (C:N) declined for most of the decomposition period, and ratios of the three species converged at <200 at 90% mass loss. Net release of N occurred only after logs had lost 90% of their original C and C:N had declined to <200. The ratio of carbon to phosphorus (C:P) declined and converged at 500–1000 at 90% mass loss. There was no evidence of net P release from logs even at 90% mass loss. It may be possible to estimate the amounts of N and P that will be incorporated into decaying logs based on the extent to which their initial C:N differs from 200 and their initial C:P differs from 500.


1981 ◽  
Vol 11 (2) ◽  
pp. 389-400 ◽  
Author(s):  
Gerald E. Lang ◽  
Christopher S. Cronan ◽  
William A. Reiners

Forest floors, fallen branches and fallen tree boles were sampled in 13 balsam fir (Abiesbalsamea (L.) Mill.) stands in the subalpine zone (1220–1450 m) of the White Mountains in New Hampshire, U.S.A. These 13 stands were distributed in three sites of contrasting exposure, slope, and rockiness. Soil pits were excavated in three of the stands representing each of the three sites. The ash-free dry weights and major elemental contents of the forest floor and dead wood were compared along chronosequences following natural disturbances, between sites, and with other forest types. No significant trends in these components were found along chronosequence comparisons. For sites that are dissimilar in terms of physical position on the landscape and in the appearance of the trees, compensating biotic and abiotic factors apparently underlie the convergence in forest floor and soil characteristics, thereby eliminating site differences as well. The forest floor is massive; ash-free dry weight averages 92 200 kg•ha−1. Total soil profile ash-free weight is 323 600 kg•ha−1. The forest floor and mineral soil horizons are unusually rich in nitrogen and phosphorus, with weighted average ash-free nitrogen and phosphorus concentrations of 2.42 and 0.23%, respectively, in the forest floor. Total nitrogen and phosphorus contents of the forest floor are 2300 and 217 kg•ha−1, respectively. The weight and nitrogen and phorphorus contents of the fir forest floor are greater than that found in other regional forests and coniferous forests in general.


2003 ◽  
Vol 67 (3) ◽  
pp. 899-909
Author(s):  
Robert G. Qualls ◽  
Akiko Takiyama ◽  
Robert L. Wershaw

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1080 ◽  
Author(s):  
Nícolas Reinaldo Finkler ◽  
Flavia Tromboni ◽  
Iola Boëchat ◽  
Björn Gücker ◽  
Davi Gasparini Fernandes Cunha

Pollution abatement through phosphorus and nitrogen retention is a key ecosystem service provided by streams. Human activities have been changing in-stream nutrient concentrations, thereby altering lotic ecosystem functioning, especially in developing countries. We estimated nutrient uptake metrics (ambient uptake length, areal uptake rate, and uptake velocity) for nitrate (NO3–N), ammonium (NH4–N), and soluble reactive phosphorus (SRP) in four tropical Cerrado headwater streams during 2017, through whole-stream nutrient addition experiments. According to multiple regression models, ambient SRP concentration was an important explanatory variable of nutrient uptake. Further, best models included ambient NO3–N and water velocity (for NO3–N uptake metrics), dissolved oxygen (DO) and canopy cover (for NH4–N); and DO, discharge, water velocity, and temperature (for SRP). The best kinetic models describing nutrient uptake were efficiency-loss (R2 from 0.47–0.88) and first-order models (R2 from 0.60–0.85). NO3–N, NH4–N, and SRP uptake in these streams seemed coupled as a result of complex interactions of biotic P limitation, abiotic P cycling processes, and the preferential uptake of NH4–N among N-forms. Global change effects on these tropical streams, such as temperature increase and nutrient enrichment due to urban and agricultural expansion, may have adverse and partially unpredictable impacts on whole-stream nutrient processing.


1995 ◽  
Vol 11 (3) ◽  
pp. 333-350 ◽  
Author(s):  
Nicholas C. Songwe ◽  
D. U. U. Okali ◽  
F. E. Fasehun

ABSTRACTDecomposition of litter on the forest floor and of leaves of five species, Celtis zenkeri, Cola lepidota, Desbordesia glaucescens, Ceiba pentandra and Terminalia superba in nylon mesh bags, as well as wood decay were studied in the tropical rainforest at Southern Bakundu Forest Reserve, Cameroon.The rate of loss of dry matter was fastest in Celtis zenkeri which was significantly different from the other species, while potassium was the most rapidly released element from all species with more than 50% being released in the first two months of the experiment. Nitrogen and phosphorus showed initial increases in bagged leaf litter independent of dry weight losses and while nitrogen was later released phosphorus continued to increase reaching 2–3 times the initial concentration. Decomposition constant (k) of litter on the forest floor was found to be 2.23 whereas the mean decomposition constants of the different species were as follows: Celtis zenkeri 4.18, Cola lepidota 2.18, Desbordesia glaucescens 1.60 and Ceiba pentandra 2.16 for the two experiments.Termites were found to have a very great influence on the decay of the wood of Terminalia superba with decay due to micro-organisms being negligible.


Sign in / Sign up

Export Citation Format

Share Document