Genetic control of rooting ability of stem cuttings from loblolly pine

1990 ◽  
Vol 20 (9) ◽  
pp. 1361-1368 ◽  
Author(s):  
G. S. Foster

Stem cuttings from 546 loblolly pine (Pinustaeda L.) seedlings were set for rooting during each of three separate trials over time. The seedlings arose from 54 full-sib families derived from four factorial mating designs. Phenotypic variation in rooting percentage was partitioned into genetic variance, environmental variance, and genotype × environment interaction variance. Virtually all genetic variance was due to additive gene effects, with little evidence for dominance gene effects and with no epistasis present. Genetic control of rooting percentage was weak with narrow-sense and broad-sense heritabilities of 0.15 and 0.13, respectively. Selection based on either family means or clone means represented a better strategy than mass selection, as evidenced by narrow-sense and broad-sense heritabilities of 0.46 and 0.40, respectively. Predicted genetic gain in rooting percentage was estimated using two population improvement alternatives. Selection of the best 10% of the clones would increase overall rooting percentage to 53.6% in the current generation, an increase of 11.3%; whereas selection of the best individual within the best 24 of the 54 families and intermating the select trees would increase rooting percentage of the next generation to 54.1 %, an increase of 11.8%.

2005 ◽  
Vol 35 (5) ◽  
pp. 1098-1108 ◽  
Author(s):  
Brian S. Baltunis ◽  
Dudley A. Huber ◽  
Timothy L. White ◽  
Barry Goldfarb ◽  
Henry E Stelzer

More than 239 000 stem cuttings from nearly 2200 clones of loblolly pine (Pinus taeda L.) were set in five rooting trials to estimate genetic parameters associated with rooting. Overall rooting success across the five trials was 43%, and significant seasonal effects were observed. Differences among clones within full-sib families accounted for approximately 10%–17% of the total variation. On the binary scale, individual-tree narrow-sense heritability (ĥ20.1) ranged from 0.075 to 0.089 for rooting across the five separate settings, while broad-sense heritability (Ĥ20.1) ranged from 0.15 to 0.22. Narrow- and broad-sense heritability estimates on the observed binary scale were transformed to their underlying normal scale (ĥ2N, Ĥ2N). When all of the data from the five trials were analyzed together, ĥ2N (±SE) was 0.081 (0.027), Ĥ2N was 0.16 (0.013), the type B additive correlation was 0.68 (0.23), and the type B dominance correlation was 0.61 (0.27). Narrow-sense family mean heritability was 0.83 (0.24), while broad-sense clonal mean heritability was 0.82 (0.074). These moderate to high family and clonal mean heritabilities, moderate type B correlations, and substantial among-family and among-clone genetic variation indicate the potential for increasing rooting efficiency by selecting good rooting families and clones or culling poor rooters.


2017 ◽  
Vol 66 (1) ◽  
pp. 33-39 ◽  
Author(s):  
W.E. Berguson ◽  
B.G. McMahon ◽  
D.E. Riemenschneider

Abstract Populus species (P. deltoides, P. maximowiczii, P. nigra) and their inter-specific hybrids were tested for growth rate over a five year period at four test locations in Minnesota, USA, to estimate genetic variance components. The breeding scheme incorporated recurrent selection of full-sib families of pure species parents, production of F1 inter-specific hybrids from selected families, and selection of clones within the F1s. Improvement of yield through time using this scheme is predicated on the assumption that additive effects comprise a significant portion of the total genetic variance. The estimates of additive and non-additive variances reported are not traditional point estimates, because a fully balanced mating design was impossible due to parental incompatibilities which result in incomplete breeding matrices. Instead, bounded estimates, not previously used in tree genetics research, are derived from linear combinations of formulae of genetic expectations observed among-family, among-clone, and environmental variances. Our results suggest that combined family and mass selection would lead to increases in growth rate of 27 % and 47 % per generation in P. deltoides and P. nigra, respectively. Broad sense-based clonal selection within the F1 could yield selection responses in excess of 90 % of the mean of such populations. Among-family variance comprised about 1/3 of total genetic variance while within-family variance was always about 2/3 of total genetic variance, regardless of pedigree. The results indicate that recurrent intraspecific selective breeding followed by interspecific hybridization and non-recurrent selection based on broad sense genetic variation would constitute an effective yield improvement strategy.


2017 ◽  
Vol 142 (4) ◽  
pp. 306-313 ◽  
Author(s):  
Shuyin Liang ◽  
Xuan Wu ◽  
David Byrne

This project examined rose (Rosa ×hybrida) performance by measuring flower size and flower numbers per inflorescence in spring, summer, and fall seasons (mean temperatures 21.7, 30.0, and 18.1 °C, respectively) in interrelated rose populations. Populations and progeny differed in flower size as expected. Heat stress in the summer season decreased flower diameter (18%), petal number (17% to 20%), and flower dry weight (32%). Analysis of variance (ANOVA) showed a significant population/progeny × heat stress interaction for flower diameter indicating that rose genotypes responded differentially to heat stress. Flower size traits had moderate low to moderate narrow-sense (0.38, 0.26–0.33, and 0.53 for flower diameter, petal number, and flower dry weight, respectively) and moderately high to high broad-sense (0.70, 0.85–0.91, and 0.88 for flower diameter, petal number, and flower dry weight, respectively) heritability. Genotype × environment (G × E) variance (population/progeny × heat stress) for flower diameter accounted for ≈35% of the total variance in the field experiment indicating that heat stress had moderate differential genotypic effects. However, the genetic variance was several fold greater than the G × E variance indicating selection for flower size would be effective in any season but for the selection of a stable flower size (heat tolerant) rose genotype, selection would be required in both the cool and warm seasons. Seasonal differences in flower productivity of new shoots did not appear related to heat stress but rather to the severity of pruning conducted in the different seasons. The number of flowers produced on the inflorescence had moderate narrow-sense (h2 = 0.43) and high broad-sense (H2 = 0.75) heritability with a moderate genotype × pruning effect that explained about 36% of the variance.


2014 ◽  
Author(s):  
Jennifer Lachowiec ◽  
Xia Shen ◽  
Christine Queitsch ◽  
Örjan Carlborg

Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the narrow-sense heritability for this trait was statistically zero. This low additive genetic variance likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, the broad-sense heritability for root length was significantly larger, and we therefore also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. This analysis revealed four interacting pairs involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. Explorations of the genotype-phenotype maps for these pairs revealed that the detected epistasis cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. In summary, statistical epistatic analyses were found to be indispensable for confirming known, and identifying several new, functional candidate genes for root length using a population of wild-collected A. thaliana accessions. We also illustrated how epistatic cancellation of the additive genetic variance resulted in an insignificant narrow-sense, but significant broad-sense heritability that could be dissected into the contributions of several individual loci using a combination of careful statistical epistatic analyses and functional genetic experiments.


Bragantia ◽  
2008 ◽  
Vol 67 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Marcelo Marchi Costa ◽  
Antonio Orlando Di Mauro ◽  
Sandra Helena Unêda-Trevisoli ◽  
Nair Helena Castro Arriel ◽  
Ivana Marino Bárbaro ◽  
...  

The estimation of genetic parameters, especially in early generations, is very useful for directing the selection process in breeding programs. The present research was undertaken to estimate heritabilities in the broad sense, narrow sense and using parent-offspring regression in F3 soybean populations from six two-way crosses, originated from the Soybean Breeding Program of Faculdade de Ciências Agrárias e Veterinárias (UNESP), Jaboticabal campus. It was used the family design with common checks located ten plots apart. It was observed highly significant differences among families. The experimental coefficient of variation (CVe), the CVg/CVe ratio and the heritability showed wide variation among traits, being the highest values found for number of pods, number of seeds and grain yield, making evident the existence of variance to be exploited by breeding. The estimation of the heritability coefficients in the broad sense, narrow sense and by regression were close in most of the situations, showing that the largest part of genetic variance is of additive nature, in which simple selection methods can lead to satisfactory genetic gains.


2020 ◽  
Author(s):  
Galina Lupascu ◽  
◽  
Svetlana Gavzer ◽  

The article presents data on the effects of the interaction of common wheat with the fungus Drechslera sorokiniana on grain vigor. Its differentiated action on germination and seedling length (LP) was found. The vigor index (VI) depended more on LP (r = 0.90 *) than on the germination 278 level (r = 0.52 *, p≤0.05). The coefficient of heritability in the broad sense (h2) was 71.3% for LP and 60.1% – for VI. The association of h2 and genetic progress with high values reveals the pronounced contribution of additive genetic variance in the control of the vigor index, which offers increased opportunities in the selection of wheat plants resistant to this pathogen in restricted terms.


1991 ◽  
Vol 116 (4) ◽  
pp. 724-727 ◽  
Author(s):  
Creighton L. Gupton ◽  
Barbara J. Smith

Experiments were conducted to estimate the relative importance of additive and dominance genetic variances and non-allelic interactions in the inheritance of resistance to Colletotrichum spp. in strawberry (Fragaria × ananassa Duch.). Progeny of 40 parents crossed in a Comstock and Robinson Design II Mating scheme were inoculated with three isolates of C. fragariae and one isolate of C. acutatum. Disease development on each plant was rated visually. Variance components were estimated and converted to genetic variances. Estimates of were six to 10 times higher than those for Within-family variance not accounted for by equaled 35% and 38% of the total genetic variance in females and males, respectively, indicating probable epistatic effects. The frequency distribution of disease severity ratings was bimodal in both experiments, suggesting major gene action. Narrow-sense heritability estimates were 0.37 and 0.26, and broad-sense heritability estimates were 0.87 and 0.85 for females and males, respectively. Narrow-sense heritability estimates are probably sufficient to produce gains from recurrent selection. Gains from selection of clonal value should be possible because of the high broad sense heritability estimates. It appears feasible to establish a broad genetic-based population resistant to Colletotrichum spp. from which selections could be evaluated per se and/or recombined to produce improved populations.


2018 ◽  
Vol 55 (04) ◽  
pp. 610-620 ◽  
Author(s):  
M. FERNANDA GUINDON ◽  
EUGENIA MARTIN ◽  
VANINA CRAVERO ◽  
ENRIQUE COINTRY

SUMMARYPea is a self-pollinated, diploid (2n = 14), annual crop produced worldwide for human consumption and animal feed. The exploitation of maximum genetic potential from available pea resources implies the knowledge of genetic parameters of yield components. Hence, the present study was conducted in a cross between two pea varieties, namely DDR14 and Explorer, its F2 progeny and F3 families to find out transgressive segregants and to determine the magnitude of narrow sense heritability and heterosis. The high narrow sense heritability values obtained indicated that rapid gain could be achieved through selection for the different traits; however, the presence of genotype x environment interaction could limit the correspondence of these estimated values with the observed ones. The selection of lines through their phenotypic values is influenced by environmental and error effects. Best linear unbiased prediction (BLUP) was used for the prediction of genotypic values using morphological data from different years, allowing the correction for environmental effects. These estimates were used for genetic analysis of the traits. Heterosis was observed for number of pods (27.1%) and number of seeds (23.3%), characters that have a direct effect on yield. The cross also showed high frequency of transgressive segregation for these characters in F3 generation (15.5% and 13.6%, respectively). There were 12.73% families transgressive for two or more characters, with genotypic values of 49.82–64.41 for number of pods and 153.75–189.59 for seed number. The crossing between Explorer and DDR14 provided a base for the selection of superior progeny.


2022 ◽  
Vol 951 (1) ◽  
pp. 012103
Author(s):  
E Kesumawati ◽  
Sabaruddin ◽  
E Hayati ◽  
N Hadisah ◽  
R Hayati ◽  
...  

Abstract Pepper is widely cultivated as a condiment and cash crop in Indonesia. However, Pepper yellow leaf curl disease (PepYLCD) caused by begomovirus is currently seriously affect the domestic pepper production. Breeding for begomovirus resistance material by crossing is currently necessary to overcome the constraint. The present study is aimed to determine the resistance of pepper (C. annuum) plants F2 progenies to begomovirus infection in the growth stage. Two local C. annuum accessions, BaPep-5 as a resistance donor for pepy-1 begomovirus resistance gene (locally called Perintis) and BaPep-4 as a susceptible parent (locally called Kencana) were crossed to generate F2 progenies. The research was conducted in Agricultural Extension Training Centre (BLPP) Saree and Horticulture Laboratory of Syiah Kuala University from February to July 2020. 500 F2 progenies were transplanted to the field along with 15 plants of each parent as control. The result suggested that plant height and crown width had the highest broad sense heritability value, whereas the dichotomous height, stem diameter, secondary branch, and tertiary branch had the lowest broad sense heritability value. Coefficient of genetic variance and coefficient of phenotypic variance from overall characteristics were relatively low which suggest the narrow sense to slightly narrow sense heritability.


2007 ◽  
Vol 37 (1) ◽  
pp. 195-205 ◽  
Author(s):  
Brian S Baltunis ◽  
Dudley A Huber ◽  
Timothy L White ◽  
Barry Goldfarb ◽  
Henry E Stelzer

Field trials established with clones and seedlings from the same families provide an opportunity for comparing full-sib family performance across propagule types. More than 1200 different clones together with over 14 000 zygotic seedlings from the same 61 full-sib families of loblolly pine (Pinus taeda L.) were tested on multiple sites across Florida and Georgia. The genetic variance associated with several early growth traits partitioned differently depending on propagule type. Most of the genetic variance associated with growth in the clonal population was additive, while the estimate of dominance in the seedling population was greater than estimates of dominance in the clonal population, based on single-site analyses. Apparently, a lack of randomization of the seedlings prior to field establishment caused full-sib families to appear more different, inflating estimates of dominance genetic variance. Parental and full-sib family ranks were stable regardless of propagule type as indicated by type B genetic correlations. In the clonal population, little genotype × environment interaction was observed across sites at the parental, family, and clonal levels for all traits. The high genetic correlations between propagule types provide further assurance that selections made through traditional tree-improvement activities for recurrent selection for general combining ability in seedling trials can also be used successfully for breeding families to test in a clonal forestry program.


Sign in / Sign up

Export Citation Format

Share Document