Résultats après 5 ans d'un essai de coupe de jardinage dans une érablière

1992 ◽  
Vol 22 (11) ◽  
pp. 1623-1629 ◽  
Author(s):  
Zoran Majcen ◽  
Yvon Richard

To study the effects of selection cutting and to determine the optimal residual basal area after such cuttings, an experimental area was established in Sainte-Véronique (Quebec) in 1983. Five-year results indicate that the gross rate of growth increases when residual basal area decreases. The best net annual basal area growth lies between 0.40 and 0.43 m2/ha in selection plots; this is almost twice the growth of control plots. Sugar maple regeneration is excellent no matter the residual basal area. Selection cuttings also resulted in a good yellow birch regeneration, and survival is better, after 5 years, in high residual basal area plots. Yellow birch regeneration is almost absent in control plots. When all factors (growth in basal area, regeneration, and tree injuries) are considered, block 2, with a residual basal area of 19.3 m2/ha, gives the best results after 5 years.

2003 ◽  
Vol 79 (5) ◽  
pp. 898-905 ◽  
Author(s):  
Steve Bédard ◽  
Zoran Majcen

Eight experimental blocks were established in the southern part of Québec to determine the growth response of sugar maple (Acer saccharum) dominated stands after single tree selection cutting. Each block contained eight control plots (no cut) and eight cut plots. The intensity of removal varied between 21% and 32% and residual basal area was between 18.2 and 21 m2/ha. Ten year net annual basal area growth rates in cut plots (0.35 ± 0.04 m2/ha) were significantly higher (p = 0.0022) than in control plots (0.14 ± 0.06 m2/ha). The treatment particularly favoured diameter growth of stems between 10 and 30 cm in dbh, whose crowns were released by removing neighbouring trees. These results show that if the same net growth rate is maintained in the next decade most of the cut plots will reach their pre-cut basal area in about 20 years after cutting. Key words: northern hardwoods, selection cutting, uneven aged silviculture, basal area growth, diameter growth


Author(s):  
Alex Noel ◽  
Jules Comeau ◽  
Salah-Eddine El Adlouni ◽  
Gaetan Pelletier ◽  
Marie-Andrée Giroux

The recruitment of saplings in forest stands into merchantable stems is a very complex process, thus making it challenging to understand and predict. The recruitment dynamics in the Acadian Forest Region of New Brunswick are not well known or documented. Our objective was to draw an inference from existing large scale routine forest inventories as to the different dynamics behind the recruitment from the sapling layer into the commercial tree size layer in terms of density and occurrence of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britt.) following harvesting, by looking at many factors on a wide range of spatial and temporal scales using models. Results suggest that the variation in density and probability of occurrence is best explained by the intensity of silvicultural treatment, by the merchantable stem density in each plot, and by the proportion of merchantable basal area of each group of species. The number of recruits of sugar maple and yellow birch stems tend be higher when time since last treatment increases, when mid to low levels of silvicultural treatment intensity were implemented, and within plots having intermediate levels of merchantable stem density. Lastly, our modeling efforts suggest that the probability of occurrence and density of recruitment of both species tend to increase while its share of merchantable basal area increases.


2013 ◽  
Vol 89 (04) ◽  
pp. 512-524 ◽  
Author(s):  
Martin Béland ◽  
Bruno Chicoine

We examined applicability of various partial cutting systems in order to regenerate tolerant hardwood stands dominated by sugar maple (Acer saccarhum), American beech (Fagus grandifolia) and yellow birch (Betula alleghaniensis) on northern New Brunswick J.D. Irving Ltd. freehold land. Sampling of 1065 one-m2 plots in 31 stands managed by selection cutting, shelterwood method and strip or patch cutting and in six control stands allowed a 15-year retrospective study of natural regeneration in stands of low residual densities and with minimal soil disturbance and no control of competing vegetation. Beech regeneration was most abundant in the patch cuts, yellow birch in shelterwood stands and sugar maple in the selection system areas. Results suggest that initial stand conditions influence the composition of the regeneration more than the prescribed treatment. At the stand scale (a few hectares), sugar maple recruitment was positively influenced by its proportion in the initial stand, and negatively by the cover of herbs and shrubs. Yellow birch regeneration was mainly affected by shrub competition. At the plot (1 m2) scale, mineral soil and decayed wood substrates and ground-level transmitted light were determinant factors for yellow birch regeneration. Beech-dominated stands were likely to regenerate to beech. A dense beech sucker understory was promoted in harvested patches. Areas with dense understory of American beech, shrubs, or herbs require site preparation to reduce interference either before or at the time of partial cutting. Shelterwood seed cutting and selection cutting should leave a residual of 12 m2/ha and 17 m2/ha respectively in seed trees uniformly distributed.


2003 ◽  
Vol 33 (11) ◽  
pp. 2074-2080 ◽  
Author(s):  
Louis Duchesne ◽  
Rock Ouimet ◽  
Claude Morneau

The first tree health decline symptoms usually observed are foliar deficiency symptoms, foliage loss, and dieback. To improve the subjective nature and unspecificity of these assessments, we examined sugar maple (Acer saccharum Marsh.) radial growth and health to develop an indicator of sugar maple tree health status based on radial growth pattern. We used the basal area increment (BAI) of 328 tree-ring collections from 16 sites located in southern Quebec, throughout the sugarbush natural range, that were categorized by defoliation class. BAI of trees with decline symptoms was significantly lower than that of healthy trees in 9 of the 16 stands. BAI trends since 1955 showed an inverse relationship with tree decline class measured in 1989, irrespective of tree age. The results indicate that declining trees in these stands have not recovered based on BAI. They also suggest that the decrease in slope of BAI predated the observed symptoms of sugar maple decline by at least one decade. Results suggest that sugar maple vigor and health can be assessed by measuring tree's BAI trend, an indicator that may be useful for the diagnosis of sugar maple health and status years before the appearance of visible canopy symptoms.


1989 ◽  
Vol 19 (2) ◽  
pp. 279-284 ◽  
Author(s):  
J. A. Stanturf ◽  
E. L. Stone Jr. ◽  
R. C. McKittrick

Nitrogen fertilization rate trials (0–672 kg/ha) were established in seven second-growth mixed deciduous forest stands in southern New York, on well to somewhat poorly drained soils typical of better hardwood sites, with no history of fire or cultivation. Basal-area growth over 20 years was determined from increment cores of dominant and codominant trees. Significant growth response occurred only for black cherry (Prunusserotina Ehrh.). Nitrogen additions of 168–336 kg/ha increased growth 21% over 5–10 years. Ten-year basal-area growth response of sugar maple (Acersaccharum Marsh.) and white ash (Fraxinusamericana L.) was less than in other fertilization studies. The lack of response is attributed to favorable nitrogen status of the soils, resulting from lack of disturbance over at least the last four decades and, possibly, atmospheric input of nitrogen.


2001 ◽  
Vol 18 (4) ◽  
pp. 119-126 ◽  
Author(s):  
Steve Bédard ◽  
Zoran Majcen

Abstract Experimental blocks were established in five regions of southern Québec to determine the response of hardwood stands to selection cutting. The blocks contain five control stands (no cut) and five treated stands, composed mainly of sugar maple in association with yellow birch and American beech. Treated stands were harvested using single tree selection to a residual density varying from 16.8 to 21.2 m2. Results obtained 10 yr after treatment demonstrate that the annual gross growth rate was not significantly different between treated and control stands. However, net annual growth rate was higher in four out of five cut stands, because the annual mortality rate was less in these stands than in controls. Cutting significantly enhanced the growth of stems with an initial diameter at breast height (dbh) of 10 to 28 cm and favored the development of sugar maple saplings in all blocks and yellow birch saplings in three blocks. North. J. Appl. For. 18(4):119–126.


2005 ◽  
Vol 35 (8) ◽  
pp. 1901-1913 ◽  
Author(s):  
Johnny L Boggs ◽  
Steven G McNulty ◽  
Michael J Gavazzi ◽  
Jennifer Moore Myers

The declining health of high-elevation red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh) Poir.) in the southern Appalachian region has long been linked to nitrogen (N) deposition. Recently, N deposition has also been proposed as a source of negative health impacts in lower elevation deciduous forests. In 1998 we established 46 plots on six sites in North Carolina and Virginia dominated by American beech (Fagus grandifolia Ehrh.), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis Britt). We evaluated several response variables across an N deposition gradient, including annual basal area growth; foliage percent N, Al, P, K, Mg, and Ca; and forest floor percent N, Mg, and C, pH, and potential net nitrification and N mineralization rates. We found a significant linear relationship between N deposition and basal area growth in sugar maple, but not in American beech or yellow birch. In addition, we found a significant relationship between N deposition and foliar chemistry (foliar %N in all species, foliar Mg/N and %K in sugar maple, and %P in sugar maple and yellow birch). Foliar %N of the three studied species was high relative to values reported in other studies in the United States and Canada. Several forest floor response variables (%N, C/N, pH, Mg/N, and potential net nitrification and N mineralization rates and nitrification/mineralization fractions) were also correlated with N deposition. The correlations between the above response variables and N deposition are consistent with the influence of chronic N deposition on forested ecosystems measured in other regions and suggest that chronic N deposition may be influencing forest structure and chemistry within the southern region.


2007 ◽  
Vol 24 (3) ◽  
pp. 192-196 ◽  
Author(s):  
Laura S. Kenefic ◽  
Ralph D. Nyland

Abstract Although traditional application of the selection system includes a focus on high-value trees that may reduce cavities and snags, few studies have quantified those habitat features in managed uneven-aged stands. We examined the effects of single-tree selection cutting on cavity trees and snags in a northern hardwood stand immediately prior to the second cutting. Marking followed guidelines proposed by Arbogast, C., Jr. (1957. Marking guides for northern hardwoods under selection system. US For. Serv. Res. Pap. 56, Lake States Forest Experiment Station. 20 p.), with the objective of improving stand quality for timber production while maintaining a balanced diameter distribution. The stand contained seven species of cavity trees and snags; sugar maple and American beech were most common, the latter comprising 20% of snags and 26% of cavity trees despite its relatively minor (7%) contribution to stand basal area. We found that 92% of cavity trees were live, underscoring the value of living trees as sources of cavities. Precut cavity tree density (25.2 live cavity trees per hectare) was more than twice that found in other studies of selection stands, although density of snags (11.0 snags per hectare) was comparable or lower. More than 50% of sampled cavity trees were designated for removal in the second selection cut, reducing projected postcut density to 11.0 live cavity trees per hectare, a density similar to that found in other studies. Postcut density of large cavity trees (3.3 live trees >45 cm dbh per hectare) exceeded published guidelines for northern hardwoods (0.25 to 2.5 live cavity trees >45 cm dbh per hectare). We speculate that the relatively high maximum diameter (61 cm dbh) and long cutting cycle (20 years) used to define the target stand structure may have contributed to the number of cavity trees observed. Nevertheless, selection cutting as applied in this study will likely reduce cavity abundance unless retention of trees with decay is explicitly incorporated into the management strategy.


1995 ◽  
Vol 25 (3) ◽  
pp. 386-397 ◽  
Author(s):  
Timothy R. Wilmot ◽  
David S. Ellsworth ◽  
Melvin T. Tyree

We compared growth with soil and foliar elemental composition in seven stands of sugar maple (Acersaccharum Marsh.) in northern Vermont characterized by high or low incidence of crown dieback over the period 1989–1992. In stands with low-quality crown conditions, such as elevated crown dieback, long-term basal area growth rates were approximately half of those in stands with higher crown quality. Average annual basal area growth was 17.5 cm2 for dominant trees in these stands during the period 1953–1992 compared with 32.3 cm2 for trees in higher quality stands. The occurrence of elevated crown dieback was apparently unrelated to stand characteristics such as stand age, basal area, stem density, elevation, or aspect among the stands sampled. Stands with elevated crown dieback were found on soils characterized by low pH ( <4.0), low base cation pools (particularly Ca and Mg), and higher Al in soil surface horizons than higher quality stands. Over 4 years, sugar maple stands with elevated crown dieback exhibited significantly lower (P < 0.01) foliar Ca concentrations and somewhat lower foliar N and Mg than higher quality stands, while soil and foliar K were similar in both dieback classes. Among survey plots sampled in 1989, soil pH and Ca were strongly correlated with foliar Ca and K (P < 0.001). Soil pH, soil Ca, and foliar Ca were also strongly correlated with the level of crown dieback among plots and stands (P < 0.0001). Our results indicate that podzolic soils in northern Vermont may present marginal conditions for sugar maple growth in terms of soil pH and soil Ca availability, but that P and K pools appear to be sufficient for growth. While a lack of historical data prevents identification of long-term trends in nutrient availability in these soils, factors promoting losses of base cations from acidic, base-cation-poor Podzols may also exacerbate foliar nutrient deficiencies and thus affect the crown condition of sugarbushes in northern Vermont.


Sign in / Sign up

Export Citation Format

Share Document