Nutrient concentrations and nitrogen mineralization in forest floors of single species conifer plantations in coastal British Columbia

2000 ◽  
Vol 30 (9) ◽  
pp. 1341-1352 ◽  
Author(s):  
C E Prescott ◽  
L Vesterdal ◽  
J Pratt ◽  
K H Venner ◽  
L M de Montigny ◽  
...  

We examined the extent to which nutrient concentrations and C and N mineralization rates in forests floors under different tree species are predictable from the chemistry of foliar litter and its rate of decomposition. We studied replicated single species plantations of western redcedar (Thuja plicata Donn ex D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and Sitka spruce (Picea sitchensis (Bong.) Carr.) at four locations. Nutrient concentrations in forest floors correlated poorly with litter nutrient concentrations; the only significant relationships were for Ca and K. Nitrogen mineralization correlated weakly with forest floor C/N ratio, and differed more among sites than among species. None of the litter chemistry parameters were related to net N mineralization rates. Decomposition was fastest in hemlock litter, intermediate in Douglas-fir litter and lowest in cedar litter. Litter also decomposed more rapidly on hemlock forest floors than on cedar forest floors. Rates of N mineralization in the forest floors were not related to rates of decomposition of foliar litter. Differences among sites in N mineralization rates were related to the understory vegetation composition, particularly the amount of the ericaceous shrub salal, which in turn was related to slope position. These site factors appeared to override the effect of tree species on rates of N mineralization.


2000 ◽  
Vol 30 (11) ◽  
pp. 1698-1706 ◽  
Author(s):  
K D Thomas ◽  
C E Prescott

Forest floor samples from a 25-year-old plantation of three tree species (Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.), and paper birch (Betula papyrifera Marsh.)) growing on the same site were incubated (aerobically) in the laboratory for 29 days. Rates of N mineralization in the forest floors of Douglas-fir (165.1 µg/g) was significantly greater than either birch (72.9 µg/g) or lodgepole pine (51.2 µg/g). Douglas-fir forest floors also had the highest N concentration, lowest C/N ratio, and highest NH4-N concentrations, followed by paper birch and lodgepole pine. Douglas-fir forest floors also mineralized more N per unit of either N or C than the other species. There were no differences in rates of CO2-C mineralization in forest floors among the three species. Nitrogen mineralization rates were positively correlated with the N concentration of the forest floor (r2 = 0.81) and also with the C/N and NH4-N concentration of the forest floor. Nitrogen concentration, C/N, and lignin/N of foliar litter were poor predictors of N mineralization rates resulting from Douglas-fir litter having the lowest N concentrations in litter but the highest rates of net N mineralization in the forest floor. Nitrogen mineralization in the forest floor was negatively correlated (r2 = 0.67) with the lignin concentration in foliar litter. Douglas-fir litter had low lignin concentrations, which may allow more of the mineralized N to remain in inorganic forms rather than being bound in humus. Our results suggest that a component of Douglas-fir might improve N availability in coniferous forest floors.



1993 ◽  
Vol 23 (5) ◽  
pp. 970-978 ◽  
Author(s):  
K. Van Cleve ◽  
J. Yarie ◽  
R. Erickson ◽  
C.T. Dyrness

Nitrogen (N) mineralization and nitrification were compared among ecosystems representing a primary successional sequence on the Tanana River floodplain of interior Alaska. These processes displayed marked seasonality, were closely related to substrate chemistry, and reflected the impact of vegetation clearing. The highest rates of N mineralization were encountered in the June to July incubation periods, and rates generally declined during the remainder of the summer. The early season period (June to July) was the interval of most favorable litter and mineral soil temperature and most available energy supply for microbial mineralization of detrital materials. Minimal rates were encountered during the winter. Litter layer N mineralization rates were highest in the early-successional poplar–alder (Populusbalsamifera–Alnustenuifolia (Nutt.) stage and declined with advancing succession in poplar (Populusbalsamifera) and mature white spruce (Piceaglauca) (Moench) Voss) stands. The poplar–alder stage displayed the highest rate of nitrification. Nitrate constituted 98% of the mineralized N in early-successional poplar–alder forest floors but fell to 4 and 0% in poplar and white spruce forest floors, respectively. Nitrogen mineralization was closely related to significant increases in the lignin/N ratio across the sequence of vegetation types. The rate of surface mineral soil net N mineralization increased with succession in response to higher soil organic matter content. The range of average total seasonal net N mineralization (260–1600 mg N•m−2) for litter layer plus mineral soil among successional stages in this study was generally lower than the 1200–8400 mg N•m−2 reported by investigators for other studies in temperate latitudes. Vegetation clearing increased the magnitude of temporal fluxes as well as total annual mineral N production. The most consistent increases were encountered in the poplar–alder vegetation type. The average seasonal total net N mineralization for forest floor plus mineral soil in this vegetation type increased from 1500 to 3264 mg N•m−2 as a result of clearing. Soil temperature declined with advancing succession and generally increased as a consequence of clearing. However, these changes were not as closely correlated with N mineralization as were the changes in substrate chemistry encountered across this successional sequence.



1994 ◽  
Vol 24 (12) ◽  
pp. 2424-2431 ◽  
Author(s):  
C.E. Prescott ◽  
C.M. Preston

To determine if western red cedar (Thujaplicata Donn) litter contributes to low N availability in cedar–hemlock forests, we measured concentrations of N and rates of net N mineralization in forest floors from single-species plantations of cedar, western hemlock (Tsugaheterophylla (Raf.) Sarg.), and Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) on the same site in coastal British Columbia. Concentrations of total and extractable N and rates of net N mineralization during laboratory incubations were lowest in the cedar forest floor and highest in Douglas-fir. Less C was mineralized in the cedar forest floor during incubation, and the amount of N mineralized per unit C was least in cedar. Rates of mass loss of foliar litter of the three species were similar during the first 50 weeks of a 70-week laboratory incubation, but cedar lost mass more quickly during the final 20 weeks. Rates of net N mineralization in the forest floors were significantly correlated with the initial percent N, C/N, % Klason lignin, and lignin/N of foliar litter. Foliar litter of cedar had lower concentrations of N and greater proportions of alkyl C (based on 13C NMR spectroscopy) than Douglas-fir litter. These characteristics of cedar litter may contribute to low N availability in cedar–hemlock forest floors. Concentrations of alkyl C (waxes and cutin) may be better than lignin for predicting rates of mass loss and N mineralization from litter.



2000 ◽  
Vol 80 (2) ◽  
pp. 271-276 ◽  
Author(s):  
T. Paré ◽  
H. Dinel ◽  
M. Schnitzer

The recycling of poultry (Gallus gallus domesticus) manure (PM) needs to be done in a manner that will not only improve soil physical, chemical and biological properties but also minimize environmental risks. Untreated PM is more difficult to handle and more expensive to apply than granular fertilizers; the application of PM in the form of tablets may be a suitable alternative. It is necessary to determine whether C and N mineralization in tabletized PM (T-PM) differs from non-tabletized PM (NT-PM). Net C and N mineralization from a Brandon loam soil (Typic Endoaquoll) amended with NT-PM and T-PM, were measured in an incubation study at 25 °C. After 60 d of incubation, about 62 and 77% of total PM carbon was mineralized in NT-PM and T-PM amended soils, respectively. Carbon mineralization was not stimulated by the addition of PM tablets containing NPK to soil, while in soils mixed with NT-PM + NPK, soil respiration was reduced. Net N mineralization was similar in soils amended with T-PM and NT-PM, although changes in ammonium (NH4+–N) concentrations during incubation differed. Generally more NH4+–N accumulated in soil amended with T-PM and T-PM + NPK than with NT-PM and NT-PM + NPK The concentrations of nitrate (NO3−–N) did not differ in soils amended with T-PM and NT-PM, indicating a reduction in nitrification and NH4+–N accumulation in soils amended with PM tablets. Key words: Poultry manure, tablets, carbon mineralization, nitrogen mineralization, organic fertilizer



2014 ◽  
Vol 6 (2) ◽  
pp. 3051-3074 ◽  
Author(s):  
M. K. Abbasi ◽  
M. M. Tahir ◽  
N. Sabir ◽  
M. Khurshid

Abstract. Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg−1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg−1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg−1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = −0.84; p ≤ 0.01), C/N ratio (r = −0.69; p ≤ 0.05), lignin/N ratio (r = −0.68; p ≤ 0.05), polyphenol/N ratio (r = −0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = −0.70; p ≤ 0.05) indicating a significant role of residue chemical composition and quality in regulating N transformations and cycling in soil. The present study indicates that incorporation of plant residues strongly modify the mineralization-immobilization turnover (MIT) of soil that can be taken into account to develop synchronization between net N mineralization and crop demand in order to maximize N delivery and minimize N losses.



2005 ◽  
Vol 85 (5) ◽  
pp. 579-587 ◽  
Author(s):  
Y. K. Soon ◽  
S. S. Malhi

The influence o f landscape position on the dynamics of N in the soil-plant system has not been adequately studied. Our aim with this study on a predominantly Black Chernozem soil was to evaluate the effect of slope position (upper vs. lower) and N fertilizer application (none vs. 60 kg N ha-1) on soil and wheat (Triticum aestivum L.) N through the growing season. Landscape position had a dominant effect on soil NO3− and soluble organic N (SON) concentrations, especially in the surface 15 cm. These pools of soil N and net N mineralization were greater at the lower than at the upper slope position. The landscape effect is attributed to higher organic matter content (as measured by organic C) and water availability in lower compared with upper slope positions. Nitrogen application had no measurable effect on soil NO3− and SON concentrations. Exchangeable and non-exchangeable NH4+ were little affected by slope position or N fertilization. Nitrogen application increased wheat N uptake; however, its influence was less than that of slope position, especially on N accumulation in wheat heads during grain-filling. Although N application increased wheat yields, landscape position exerted the greater influence: grain yield was less on upper than lower slope positions due to earlier onset of crop maturity. During grain filling, net N mineralization was suppressed at the upper slope position and by N application. The increase in crop yield and N uptake due to N application was not significantly different between slope positions. This study demonstrated that landscape position had a greater influence on N dynamics and availability than the application of typical amounts of fertilizer N and that the two effects were mostly independent of each other. Key words: Available N, landscape position, N uptake, net N mineralization, soluble organic N



2014 ◽  
Vol 60 (No. 6) ◽  
pp. 249-254 ◽  
Author(s):  
D. Liu ◽  
S. Fang ◽  
Y. Tian ◽  
Chang SX

Plant roots strongly influence C and N availability in the rhizosphere via rhizodeposition and uptake of nutrients. An in situ rhizobox approach was used to compare rhizosphere effects of different tree species and clones on N cycling under seasonally flooded soil. We examined N mineralization and nitrification rates, inorganic N, and microbial biomass C (MBC) and N (MBN) in rhizosphere and bulk soils of three poplar clones, alder, and willow plantations in southeast China. Significant differences in soil pH, total N, soil organic C, MBC, MBN, and MBC/MBN were found between bulk and rhizosphere soils except alder. Compared to bulk soil, the net N mineralization and nitrification rates in rhizosphere soil across all tree species and clones increased by 124&ndash;228% and 108&ndash;216%, respectively. However, NO<sub>3</sub><sup>&ndash;</sup>-N was depleted in the rhizosphere soil mainly owing to the root uptake and rhizosphere microbial immobilization. The magnitude of rhizosphere effects on N transformations was considerably different among the tree species studied. Of the tested ones, alder had the greatest rhizosphere effect on N transformation, indicating different capacities of tree species to facilitate N turnover in the rhizosphere.



2000 ◽  
Vol 80 (3) ◽  
pp. 401-410 ◽  
Author(s):  
T. A. Forge ◽  
S. W. Simard

The trophic structure of nematode communities, lengths of fungal hyphae, and gross populations of protozoa and bacteria were compared between clearcuts and adjacent forests at three sites in the southern interior of British Columbia in 1996, 1997, and 1998. Total C and N, mineralizable N (anaerobic incubation), and N mineralised during aerobic incubations, were determined from the same soil samples used for biological assays. Net N mineralization did not differ between clearcuts and forests in 1997; in 1998 net N mineralization in the organic horizon was four times greater for forests than for clearcuts. Hyphal lengths and total microbial biomass were greater in forest soil than in clearcut soil. Bacterial abundance was greater in forest soil than in clearcut soil in 1996 only. The abundance of protozoa did not differ between clearcuts and forests. Fungivorous, omnivorous, and predacious nematodes were less abundant in clearcut soil than in forest soil. Bacterivorous nematodes were more abundant in the mineral soil of clearcuts than in forests in 1996, but did not differ between clearcuts and forests in any other combination of year and horizon. Net N mineralization was correlated with the ratio of bacterial biomass/fungal biomass (r = 0.72, 12 degrees of freedom), as well as the abundance of amoebae (r = 0.83), total nematodes (r = 0.80), bacterivorous nematodes (r = 0.74), and fungivorous nematodes (r = 0.83). Key words: Microfauna, nematode ecology, microbial biomass, clearcut harvesting, nitrogen mineralization



1990 ◽  
Vol 70 (1) ◽  
pp. 73-81 ◽  
Author(s):  
J. W. FYLES ◽  
I. H. FYLES ◽  
M. C. FELLER

Nitrogen mineralization in five forest floors of differing morphological characteristics was compared using a greenhouse plant bioassay and laboratory aerobic and anaerobic incubations. Forest floors dominated by F materials mineralized more N and had higher k values than those dominated by H. Plant N uptake in the bioassay was highly correlated with N mineralized during the laboratory incubations across all forest floors but was 50–80% lower than predictions based on first-order kinetic parameters derived from the aerobic incubation. The relationship between bioassay plant uptake and predicted N mineralization differed among forest floors, indicating that the effect of plants on dynamics of the mineralizable N pool differs among organic matter types. Differences in N mineralization characteristics between forest floor materials suggest that forest floor morphology may provide a basis for assessing site quality. Key words: Nitrogen, anaerobic mineralization, aerobic mineralization, bioassay, forest floor





Sign in / Sign up

Export Citation Format

Share Document