Estimating a system of nonlinear simultaneous individual tree models for white spruce in boreal mixed-species stands

1999 ◽  
Vol 29 (11) ◽  
pp. 1805-1811 ◽  
Author(s):  
Shongming Huang ◽  
Stephen J Titus

A system of three interdependent, tree-level nonlinear equations was fitted. The system was used in an individual tree simulator to predict total tree height, periodic tree diameter increment, and height increment for white spruce (Picea glauca (Moench) Voss) grown in boreal mixed-species stands in Alberta. Because the variables appeared on the left-hand side of the equations also appeared on the right-hand side of the equations in the system, the system was estimated using nonlinear simultaneous techniques. Testing of cross-equation correlations using the Breusch and Pagan statistic indicated that the error terms of the related equations in the system are significantly correlated, suggesting that the parameter estimates obtained from simultaneous techniques are consistent and asymptotically more efficient than those obtained from ordinary least squares procedures applied to individual equations of the system.

2011 ◽  
Vol 26 (2) ◽  
pp. 82-90 ◽  
Author(s):  
Richard D. Kabzems ◽  
George Harper ◽  
Peter Fielder

Abstract Managing boreal mixed stands of trembling aspen (Populus tremuloides Michx.) and white spruce (Picea glauca [Moench] Voss) is more likely to sustain a diversity of values and has the potential to increase productivity at both the site and landscape levels compared with pure broadleaf or conifer management. In this study, we examine growth of white spruce and aspen after 11 growing seasons over a range of aspen densities created by spot and broadcast treatment of broadleaves using manual and chemical means, aspen spacing, and an untreated control. Results indicate that survival and growth of both spruce and aspen were similar across the range of treatments. Spruce groundline diameter was greater, and height to groundline diameter ratio was lower, for the treatments in which aspen was chemically controlled or uniformly spaced compared with the control. Light measurements at the individual tree level suggested that increased light availability improved white spruce diameter growth. Spruce height growth did not vary by treatment. The status of these experimental mixedwoods was compared with current conifer and mixedwood regeneration evaluations, as well as the preharvest composition of the original stand. After 11 growing seasons, growth of aspen and white spruce indicated that opportunities exist to further modify aspen density to enhance treatment longevity and effectiveness to produce a greater range of boreal mixedwood stand types.


2008 ◽  
Vol 32 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Chakra B. Budhathoki ◽  
Thomas B. Lynch ◽  
James M. Guldin

Abstract Individual tree measurements were available from over 200 permanent plots established during 1985–1987 and later remeasured in naturally regenerated even-aged stands of shortleaf pine (Pinus echinata Mill.) in western Arkansas and eastern Oklahoma. The objective of this study was to model shortleaf pine growth in natural stands for the region. As a major component of the shortleaf modeling effort, an individual tree-level dbh–total height model was developed in which plot-specific random parameters were fitted using maximum-likelihood methods. The model predicts tree height on the basis of dbh and dominant stand height (which could be obtained from a site-index model). The mixed-effects model approach was found to predict the total height better than the similar models developed previously for this species using ordinary least-squares methods. Moreover, such a model has the appeal of generalization of the results over a region from which the plots were sampled; and also of calibration of parameters for newly sampled stands with minimal measurements.


2020 ◽  
Vol 13 (1) ◽  
pp. 77
Author(s):  
Tianyu Hu ◽  
Xiliang Sun ◽  
Yanjun Su ◽  
Hongcan Guan ◽  
Qianhui Sun ◽  
...  

Accurate and repeated forest inventory data are critical to understand forest ecosystem processes and manage forest resources. In recent years, unmanned aerial vehicle (UAV)-borne light detection and ranging (lidar) systems have demonstrated effectiveness at deriving forest inventory attributes. However, their high cost has largely prevented them from being used in large-scale forest applications. Here, we developed a very low-cost UAV lidar system that integrates a recently emerged DJI Livox MID40 laser scanner (~$600 USD) and evaluated its capability in estimating both individual tree-level (i.e., tree height) and plot-level forest inventory attributes (i.e., canopy cover, gap fraction, and leaf area index (LAI)). Moreover, a comprehensive comparison was conducted between the developed DJI Livox system and four other UAV lidar systems equipped with high-end laser scanners (i.e., RIEGL VUX-1 UAV, RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE). Using these instruments, we surveyed a coniferous forest site and a broadleaved forest site, with tree densities ranging from 500 trees/ha to 3000 trees/ha, with 52 UAV flights at different flying height and speed combinations. The developed DJI Livox MID40 system effectively captured the upper canopy structure and terrain surface information at both forest sites. The estimated individual tree height was highly correlated with field measurements (coniferous site: R2 = 0.96, root mean squared error/RMSE = 0.59 m; broadleaved site: R2 = 0.70, RMSE = 1.63 m). The plot-level estimates of canopy cover, gap fraction, and LAI corresponded well with those derived from the high-end RIEGL VUX-1 UAV system but tended to have systematic biases in areas with medium to high canopy densities. Overall, the DJI Livox MID40 system performed comparably to the RIEGL miniVUX-1 UAV, HESAI Pandar40, and Velodyne Puck LITE systems in the coniferous site and to the Velodyne Puck LITE system in the broadleaved forest. Despite its apparent weaknesses of limited sensitivity to low-intensity returns and narrow field of view, we believe that the very low-cost system developed by this study can largely broaden the potential use of UAV lidar in forest inventory applications. This study also provides guidance for the selection of the appropriate UAV lidar system and flight specifications for forest research and management.


2018 ◽  
Vol 48 (9) ◽  
pp. 1007-1019 ◽  
Author(s):  
Mark Castle ◽  
Aaron Weiskittel ◽  
Robert Wagner ◽  
Mark Ducey ◽  
Jereme Frank ◽  
...  

Northern hardwood species display a variety of forms and defects that can reduce stem quality and complicate their timber management. However, for the most part, growth and yield models do not account for the influence of stem form and damage. This study determined the influence of stem form and damage on growth, survival, and projected future sawlog value among several northern commercial hardwood species. To accomplish this, hardwood trees on 112 permanent plots across three long-term research sites in Maine were assigned stem form and risk classes using a tree classification system developed in New Brunswick. A highly significant influence of stem form and risk on annualized individual-tree diameter increment and survival was found. Inclusion of these equations into a regional growth and yield model highlighted the importance of stem form and defects on long-term simulations as projected stand-level future value was significantly reduced by over 17%, on average (range of 13% to 28%), when compared with projections that did not include that tree-level information. The results highlight the importance of stem form and defects, as well as the need to account for them, in growth and yield applications that assess the forecasted value of commercially important hardwood stands.


2014 ◽  
Vol 44 (2) ◽  
pp. 162-171 ◽  
Author(s):  
Derek F. Sattler ◽  
Philip G. Comeau ◽  
Alexis Achim

Radial patterns of modulus of elasticity (MOE) were examined for white spruce (Picea glauca (Moench) Voss) and trembling aspen (Populus tremuoides Michx.) from 19 mature, uneven-aged stands in the boreal mixedwood region of northern Alberta, Canada. The main objectives were to (1) evaluate the relationship between pith-to-bark changes in MOE and cambial age or distance from pith; (2) develop species-specific models to predict pith-to-bark changes in MOE; and (3) to test the influences of radial growth, relative vertical height, and tree slenderness (tree height/DBH) on MOE. For both species, cambial age was selected as the best explanatory variable with which to build pith-to-bark models of MOE. For white spruce and trembling aspen, the final nonlinear mixed-effect models indicated that an augmented rate of increase in MOE occurred with increasing vertical position within the tree. For white spruce trees, radial growth and slenderness were found to positively influence maximum estimated MOE. For trembling aspen, there was no apparent effect of vertical position or radial growth on maximum MOE. The results shed light on potential drivers of radial patterns of MOE and will be useful in guiding silvicultural prescriptions.


1995 ◽  
Vol 25 (9) ◽  
pp. 1455-1465 ◽  
Author(s):  
Shongming Huang ◽  
Stephen J. Titus

Based on a data set from 164 permanent sample plots, an age-independent individual tree diameter increment model is presented for white spruce (Piceaglauca (Moench) Voss) grown in the boreal mixed-species stands in Alberta. The model is age independent in that it does not explicitly require tree or stand age as input variables. Periodic diameter increment is modelled as a function of tree diameter at breast height, total tree height, relative competitiveness of the tree in the stand, species composition, stand density, and site productivity. Because data from permanent sample plots are considered time series and cross sectional, diagnostic techniques were applied to identify the model's error structure. Appropriate fit based on the identified error structure was accomplished using weighted nonlinear least squares with a first-order autoregressive process. Results show that (1) all model parameters are significant at α = 0.05 level, and (2) the plot of studentized residuals against predicted diameter increment shows no consistent underestimate or overestimate for diameter increment. The model was also tested on an independent data set representing the population on which it is to be used. Results show that the average prediction biases are not significant at α = 0.05 level, indicating that the model appropriately describes the data and performs well when predictions are made.


2004 ◽  
Vol 80 (6) ◽  
pp. 694-704 ◽  
Author(s):  
Rongzhou Man ◽  
Ken J Greenway

Meta-analysis was used to summarize the research results on the growth response of understory white spruce to release from overstory aspen from different studies available from published and unpublished sources. The data were screened for the suitability for meta-analysis. Treatment effect sizes were calculated using response ratio from mean cumulative increments of released and control trees since release in height, diameter, and volume and modeled using a polynomial mixed effect regression procedure. Predictor variables include linear, quadratic, and cubic components of three independent variables — initial tree height, number of years after release, and residual basal area at release — and their linear interactions. Models with a reasonable predictive power were developed for height, diameter, and volume response, but no significant model was identified for survival. The models developed in this study can be applied to predict the growth response of understory white spruce to release, based on the growth of unreleased control trees, initial tree height, residual basal area at release, and time since release. The individual tree prediction can be easily scaled up to stand level if residual tree density and distribution is known. Key words: meta-analysis, boreal mixedwood, mixed model, polynomial regression, response ratio, growth, survival


2019 ◽  
Vol 49 (5) ◽  
pp. 463-470 ◽  
Author(s):  
Suzanne Brais ◽  
Brian D. Harvey ◽  
Arun K. Bose

Variable retention (VR) and partial cutting are both considered important silvicultural tools of natural disturbance or ecosystem based forest management approaches. Partial harvesting differs from VR in that post-treatment growth responses and stand regeneration are the primary objective rather than the maintenance of biodiversity. This partial cutting study is undertaken in mixed poplar (Populus spp.) – white spruce (Picea glauca (Moench) Voss) stands in the eastern Canadian boreal mixedwood forest. It compares, at the tree level, absolute growth rates (AGR) and relative growth rates (RGR) of basal area (BA) and stem survival; and at the stand level, it also compares absolute BA growth, mortality, and sapling density 10 years following treatment. The completely randomized experiment was established with four intensities of partial cutting (0, 50%, 65%, and 100% of poplar BA). All partial cutting intensities had a significant and similar positive effect on AGR of residual spruce stems. Complete poplar removal resulted not only in the highest increase in RGR of suppressed and intermediate spruce stems, but also in higher spruce mortality. Removal of 50% of the initial poplar stand BA provided the best trade-off between positive residual stem growth of spruce and poplar and limited post-treatment mortality.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 713 ◽  
Author(s):  
Huicui Lu ◽  
Godefridus Mohren ◽  
Miren del Río ◽  
Mart-Jan Schelhaas ◽  
Meike Bouwman ◽  
...  

Many monoculture forests have been converted to mixed-species forests in Europe over the last decades. The main reasons for this conversion were probably to increase productivity, including timber production, and enhance other ecosystem services, such as conservation of biodiversity and other nature values. This study was done by synthesizing results from studies carried out in Dutch mixed forests compared with monoculture stands and evaluating them in the perspective of the current theory. Then we explored possible mechanisms of higher productivity in mixed stands, in relation to the combination of species, stand age and soil fertility, and discussed possible consequences of forest management. The study covered five two-species mixtures and their corresponding monoculture stands from using long-term permanent forest plots over multiple decades as well as two inventories (around 2003 and 2013) across the entire Netherlands. These forest plot data were used together with empirical models at total stand level, species level and tree level. Overyielding in Douglas-fir–beech and pine–oak mixtures was maintained over time, probably owing to the intensive thinning and was achieved on the poorer soils. However, this overyielding was not always driven by fast-growing light-demanding species. On individual tree level, intra-specific competition was not necessarily stronger than inter-specific competition and this competitive reduction was less seen at lower soil fertility and dependent on species mixtures. Moreover, size-asymmetric competition for light was more associated with tree basal area growth than size-symmetric competition for soil resources. Overall, this study suggests a substantial potential of species mixing for increasing productivity and implies developing forest management strategies to convert monospecific forests to mixed-species forests that consider the complementarity in resource acquisition of tree species.


Sign in / Sign up

Export Citation Format

Share Document