THE RELATION BETWEEN HEART RATE AND VAGAL STIMULATION FREQUENCY IN THE RAT AT DIFFERENT BODY TEMPERATURES

1957 ◽  
Vol 35 (1) ◽  
pp. 1153-1164 ◽  
Author(s):  
G. W. Mainwood

The peripheral end of the right vagus was stimulated in acutely vagotomized rats under anaesthesia at different body temperatures. A fairly abrupt increase in the R–R time on the electrocardiogram was observed when a critical stimulation frequency was reached. At a body temperature of 35 °C. the critical frequency is 10 per second or more. On lowering of the body temperature to 28 °C. the critical frequency is greatly reduced so that considerable slowing may be elicited at frequencies as low as one to five per second. Possible theoretical models to account for the critical frequency and its variation with temperature are considered. The temperature effect is too great to be accounted for either on the basis of the increased number of impulses which reach the heart per cardiac cycle, or the reduced rate of cholinesterase activity. The theory most consistent with the results is that each vagal impulse liberates or inactivates a substance, the concentration of which varies directly with heart rate. The interimpulse interval at the critical frequency would then represent the regeneration time of this substance. The temperature coefficient of the regeneration process appears to be about 3.3 per 10 °C.

1957 ◽  
Vol 35 (12) ◽  
pp. 1153-1164 ◽  
Author(s):  
G. W. Mainwood

The peripheral end of the right vagus was stimulated in acutely vagotomized rats under anaesthesia at different body temperatures. A fairly abrupt increase in the R–R time on the electrocardiogram was observed when a critical stimulation frequency was reached. At a body temperature of 35 °C. the critical frequency is 10 per second or more. On lowering of the body temperature to 28 °C. the critical frequency is greatly reduced so that considerable slowing may be elicited at frequencies as low as one to five per second. Possible theoretical models to account for the critical frequency and its variation with temperature are considered. The temperature effect is too great to be accounted for either on the basis of the increased number of impulses which reach the heart per cardiac cycle, or the reduced rate of cholinesterase activity. The theory most consistent with the results is that each vagal impulse liberates or inactivates a substance, the concentration of which varies directly with heart rate. The interimpulse interval at the critical frequency would then represent the regeneration time of this substance. The temperature coefficient of the regeneration process appears to be about 3.3 per 10 °C.


2017 ◽  
Vol 4 (12) ◽  
pp. 171359 ◽  
Author(s):  
M. Teague O'Mara ◽  
Sebastian Rikker ◽  
Martin Wikelski ◽  
Andries Ter Maat ◽  
Henry S. Pollock ◽  
...  

Reduction in metabolic rate and body temperature is a common strategy for small endotherms to save energy. The daily reduction in metabolic rate and heterothermy, or torpor, is particularly pronounced in regions with a large variation in daily ambient temperature. This applies most strongly in temperate bat species (order Chiroptera), but it is less clear how tropical bats save energy if ambient temperatures remain high. However, many subtropical and tropical species use some daily heterothermy on cool days. We recorded the heart rate and the body temperature of free-ranging Pallas' mastiff bats ( Molossus molossus ) in Gamboa, Panamá, and showed that these individuals have low field metabolic rates across a wide range of body temperatures that conform to high ambient temperature. Importantly, low metabolic rates in controlled respirometry trials were best predicted by heart rate, and not body temperature . Molossus molossus enter torpor-like states characterized by low metabolic rate and heart rates at body temperatures of 32°C, and thermoconform across a range of temperatures. Flexible metabolic strategies may be far more common in tropical endotherms than currently known.


1988 ◽  
Vol 110 (2) ◽  
pp. 233-238 ◽  
Author(s):  
D. J. S. Hetzel ◽  
I. L. Bennett ◽  
C. R. Holmes ◽  
R. O. Encarnacao ◽  
M. J. MacKinnon

SummaryA telemetry system based on calibrated radio transmitters implanted in the right sublumbar fossa of cattle is described. It was evaluated in different situations. Rectal temperature was used as a standard measure of body temperature. Implant temperatures were on average 0·2 °C higher than rectal temperatures. The magnitude of changes in the two temperatures in response to environmental stimuli were very similar but the implants changed faster in response to heat stress, feeding and exercise. When cattle were confined in unshaded yards the repeatability (within-animal correlation) of implant temperatures measured at different times of the day was 0·41 ± 0·05, compared with 0·30 ± 0·05 for rectal temperatures. It was concluded that there was less extraneous variation associated with telemetric measurement.The telemetry system proved effective for monitoring the body temperature of grazing cattle within a range of 300 m. The repeatabilities of individual daily maximum and minimum temperatures were 0·43 ± 0·12 and 0·43 ± 0·11 respectively. Observations confirmed that cattle in part regulate their body temperatures by behaviours such as shading, grazing and exposure to wind. Thus body temperature whilst grazing was alone not a good index of physiological heat tolerance.


Author(s):  
Wira Hidayat bin Mohd Saad ◽  
Khoo Chin Wuen ◽  
Masrullizam bin Mat Ibrahim ◽  
Nor Hashimah Binti Mohd Saad ◽  
Syafeeza Binti Ahmad Radz ◽  
...  

Getting enough sleep at the right times can help in improving quality of life and protect mental and physical health. This study proposes a portable sleep monitoring device to determine the relationship between the ambient temperature and quality of sleep. Body condition parameter such as heart rate, body temperature and body movement was used to determine quality of sleep. All readings will be log into database so that users can review back and hence analyze quality of sleep. The functionality of the overall system is designed for a better experience with a very minimal intervention to the user. The simple test on the body condition (body temperature and heart rate) while asleep with several different ambient temperatures are varied and the result shows that someone has a better sleep for the temperature range of 23 to 28 degree Celsius. This can prove by lower body temperature and lower heart rate.


2021 ◽  
Vol 5 (3) ◽  
pp. 543-549
Author(s):  
Helmy Yudhistira Putra ◽  
Utomo Budiyanto

During the COVID-19 pandemic, the price of preventive equipment such as masks and hand sanitizers has increased significantly. Likewise, thermometers are experiencing an increase and scarcity, this tool is also sought after by many companies for screening employees and guests before entering the building to detect body temperatures that are suspected of being positive for COVID-19. The use of a thermometer operated by humans is very risky because dealing directly with people who could be ODP (People Under Monitoring/Suscpected ) or even positive for COVID-19, therefore we need tools for automatic body temperature screening and do not involve humans for the examination. This research uses the MLX-90614 body temperature sensor equipped with an ultrasonic support sensor to detect movement and measure the distance between the forehead and the temperature sensor so that the body heat measurement works optimally, and a 16x2 LCD to display the temperature measurement results. If the measured body temperature is more than 37.5 ° C degrees Celsius then the buzzer will turn on and the selenoid door lock will not open and will send a notification to the Telegram messaging application. The final result obtained is the formation of a prototype device for measuring body temperature automatically without the need to involve humans in measuring body temperature to control people who want to enter the building so as to reduce the risk of COVID-19 transmission


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4575
Author(s):  
Julyana Machado da Silva Martins ◽  
Evandro De Abreu Fernandes ◽  
João Paulo Rodrigues Bueno ◽  
Carolina Magalhães Caires Carvalho ◽  
Fernanda Heloisa Litz ◽  
...  

<p>The objective of this study was to evaluate the effect of different nutritional plans on the body temperature and organ biometrics in male and female broilers, of two ages. Here, 1,700 birds were used (850 males and 850 females) in a completely randomized design composed of five treatments (- 3%, - 1.5%, reference, + 1.5% and + 3%), with 10 repetitions, totaling 50 experimental units; the reference treatment based on nutritional and energy levels indicated in previous studies was calculated from this. At 35 and 42 d, the temperatures of the wing, head, shin, back, and cloaca in males and females were measured separately, and the average surface and body temperature were calculated. At 42 d, relative weights of the gizzard, liver, heart, and small intestine were calculated. The temperatures of the wings, back, and cloaca, and consequently the average surface temperature and body temperatures, were not affected by nutritional plans. Effects of increasing the nutritional and energy levels were observed on liver weights, the gizzard, and the small intestine. We conclude that the nutritional plans did not affect body temperature. Males had higher body temperatures than females. Body temperature increased with increase in age, and the increase in the nutritional plans increased liver weight and reduced the gizzard weights.</p>


Author(s):  
W.B.P.N. Herath ◽  
R.A.K.I. Ranasinghe ◽  
M.P.C. Sandaru ◽  
I.A.S. Lakmali ◽  
A.G.N.K. Aluthgama ◽  
...  

Addressing the emotional and mental health of the bedridden elderly is necessary as they are more likely to be depressed being isolated and dependent on a caregiver for a prolonged time. Several studies have been carried out to identify the mental stress of patients through their skin conductivity. The variations in the sympathetic nervous system reflect the emotional state of a person. This is demonstrated by the Galvanic Skin Response and thus can be used as a denotation of psychological or physiological arousal. Such arousal causes the blood capillary dilation, increment of sweat gland activities making the skin further conductive to electricity. In this study we develop a sensor module composed of a Galvanic Skin Response sensor for the bed ridden elderly and identify the relationship between body temperature, heart rate and GSR of them. The experiment is conducted upon 10 bed ridden elderly aged from 60 – 80 years of the Mihinthale region. The observations demonstrate a correlation between the heart rate, body temperature, skin conductivity and the human physiological states.


Author(s):  
Musyahadah Arum Pertiwi ◽  
I Dewa Gede Hari Wisana ◽  
Triwiyanto Triwiyanto ◽  
Sasivimon Sukaphat

Heart rate and body temperature can be used to determine the vital signs of humans. Heart rate and body temperature are two important parameters used by paramedics to determine the physical health condition and mental condition of a person. Because if your heart rate or body temperature is not normal then you need to make further efforts to avoid things that are not desirable. The purpose of this study is to design a heart rate and body temperature. In this study, the heart rate is detected using a finger sensor which placed on the finger. This sensor detects the heart rate pulses through infrared absorption of blood hemoglobin, and measure the body temperature using a DS18B20 temperature sensor which is placed axially. DS18B20 sensor works by converting temperature into digital data. The measurement results will be displayed on liquid crystal display (LCD) 2 x 16 and the data will be sent to android mobile phone via Bluetooth.  After the comparision beetwen the desain and the standart, the error is 0.46% for beats per minutes (BPM) parameters and 0.31 degrees Celsius for temperature parameters.


Author(s):  
Simona Rusu ◽  
Zdenek Knotek ◽  
Radu Lacatus ◽  
Ionel Papuc

Abstract The body temperature of 10 clinically healthy green iguanas (Iguana iguana) was measured using a thermographic camera (FLIR E6, Flir Systems Sweden) before and after the food was offered. For each animal there were performed a total of 6 measurements (3 before feeding and 3 after the food was offered). The purpose of this experiment was to observe the thermographic pattern of the body before and after the feeding, since herbivore reptiles tend to bask after the feeding to increase the body temperature that will help them afterwards digest the food. The animals were housed in individual vivariums with every animal having a basking spot available. The pictures were taken outside the vivarium in an adjacent room. The animals were handled with gloves and transported in a cardboard box in order to avoid heat transfer between the handler and the iguana that would have produced thermal artefacts. Each individual was placed on a table on a styrofoam slate, again, to avoid the heat transfer between the table and the animal`s body. For each animal a total of 4 pictures were taken (up, front, left and right). The pictures were analysed with the FLIR Tools program that is provided by the manufacturer and 3 temperatures were taken into consideration (the head temperature, body temperature on the right side and body temperature on the left side). The temperatures were compared between them and with the temperature of the vivariums that consisted of the average between the temperature in 3 different spots (basking spot, the feeding bowl site and the coldest spot) measured with an infrared thermometer GM300 (Benetech, China). The temperature of the body was dependent on the vivarium temperature and it was a significant temperature difference between the measurements before the feeding and after the feeding. Also we discovered a significant difference between the head temperature and the body temperature on the left side before the feeding that disappeared after the animals ate. There was also a significant difference between the temperature on right side and on left side of the animals both before and after the feeding. No significant temperature difference was observed between the head and the right side of the body neither before nor after the feeding.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4698 ◽  
Author(s):  
David R. Daversa ◽  
Camino Monsalve-Carcaño ◽  
Luis M. Carrascal ◽  
Jaime Bosch

Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd). Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.


Sign in / Sign up

Export Citation Format

Share Document