Sensory–motor processing in the caudate nucleus and globus pallidas: a single-unit study in behaving primates

1980 ◽  
Vol 58 (10) ◽  
pp. 1192-1201 ◽  
Author(s):  
J. W. Aldridge ◽  
R. J. Anderson ◽  
J. T. Murphy

Monkeys were prepared for chronic recording of single neurons in the caudate nucleus (Cd) or globus pallidus (GP) during learned wrist flexion–extension movements triggered by visual and somatic sensory inputs. Almost two-thirds of GP cells and more than one-third of Cd cells modified their discharge during these tasks. Three categories of response types were observed. The first was movement related. The second type was event related, in which the cells responded to either the onset or offset of the sensory inputs regardless of the correcting movement direction. A third type combined elements of the first two categories and was termed complex. These cells responded to complex abstractions of the sensory–motor event. A latency analysis indicated that the majority of cells was not involved in initiating movements but may have participated in movement execution. The results of this experiment suggest that during voluntary movement the basal ganglia activity is correlated with motor outputs, sensory inputs, and perceptual abstractions of these sensory–motor events. As such the results are compatible with an influence by diverse regions of cerebral cortex on basal ganglia neurons during the movement control process.

2016 ◽  
Vol 26 (02) ◽  
pp. 1550038 ◽  
Author(s):  
Olivier Darbin ◽  
Xingxing Jin ◽  
Christof Von Wrangel ◽  
Kerstin Schwabe ◽  
Atsushi Nambu ◽  
...  

The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25[Formula: see text]Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25[Formula: see text]Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.


Author(s):  
E. M. Sedgwick

When the basal ganglia are damaged by disease processes in man, various disorders of movement occur. In order to control movement the basal ganglia must have a sensory input and in the absence of direct connections to motoneurones or motor cortex they must act through intermediate structures. The experiments, on cats, demonstrate: (1) which sensory inputs reach the caudate nucleus and how they influence activity of the neurones there; (2) the effect of the output from the caudate nucleus and globus pallidus on the neurones of the inferior olive and reticular formation. The results are discussed with respect to the control of movement.


Author(s):  
Freya Bailes

Freya Bailes deals with the topic of musical imagery, and she uses embodied cognition as a framework to argue that musical imagery is a multimodal experience. Existing empirical studies of musical imagery are reviewed and Bailes points to future directions for the study of musical imagery as an embodied-cognition phenomenon. Arguing that musical imagery can never be fully disembodied, Bailes moves beyond the idea of auditory imagery as merely a simulation of auditory experience by “the mind’s ear.” Instead, she outlines how imagining sounds involves kinesthetic imagery and she concludes that sound and music are always connected to sensory motor processing.


2021 ◽  
Vol 11 (2) ◽  
pp. 815
Author(s):  
Husam Almusawi ◽  
Géza Husi

Impairments of fingers, wrist, and hand forearm result in significant hand movement deficiencies and daily task performance. Most of the existing rehabilitation assistive robots mainly focus on either the wrist training or fingers, and they are limiting the natural motion; many mechanical parts associated with the patient’s arms, heavy and expensive. This paper presented the design and development of a new, cost-efficient Finger and wrist rehabilitation mechatronics system (FWRMS) suitable for either hand right or left. The proposed machine aimed to present a solution to guide individuals with severe difficulties in their everyday routines for people suffering from a stroke or other motor diseases by actuating seven joints motions and providing them repeatable Continuous Passive Motion (CPM). FWRMS approach uses a combination of; grounded-exoskeleton structure to provide the desired displacement to the hand’s four fingers flexion/extension (F/E) driven by an indirect feed drive mechanism by adopting a leading screw and nut transmission; and an end-effector structure to provide angular velocity to the wrist flexion/ extension (F/E), wrist radial/ulnar deviation (R/U), and forearm supination/pronation (S/P) driven by a rotational motion mechanism. We employed a single dual-sided actuator to power both mechanisms. Additionally, this article presents the implementation of a portable embedded controller. Moreover, this paper addressed preliminary experimental testing and evaluation process. The conducted test results of the FWRMS robot achieved the required design characteristics and executed the motion needed for the continuous passive motion rehabilitation and provide stable trajectories guidance by following the natural range of motion (ROM) and a functional workspace of the targeted joints comfortably for all trainable movements by FWRMS.


Author(s):  
Katherine R. Lehman ◽  
W. Gary Allread ◽  
P. Lawrence Wright ◽  
William S. Marras

A laboratory experiment was conducted to determine whether grip force capabilities are lower when the wrist is moved than in a static position. The purpose was to determine the wrist velocity levels and wrist postures that had the most significant effect on grip force. Maximum grip forces of five male and five female subjects were determined under both static and dynamic conditions. The dominant wrist of each subject was secured to a CYBEX II dynamometer and grip force was collected during isokinetic wrist deviations for four directions of motion (flexion to extension, extension to flexion, radial to ulnar, and ulnar to radial). Six different velocity levels were analyzed and grip forces were recorded at specific wrist positions throughout each range of movement. For flexion-extension motions, wrist positions from 45 degrees flexion to 45 degrees extension were analyzed whereas positions from 20 degrees radial deviation to 20 degrees ulnar deviation were studied for radial-ulnar activity. Isometric exertions were also performed at each desired wrist position. Results showed that, for all directions of motion, grip forces for all isokinetic conditions were significantly lower than for the isometric exertions. Lower grip forces were exhibited at extreme wrist flexion and extreme radial and ulnar positions for both static and dynamic conditions. The direction of motion was also found to affect grip strength; extension to flexion exertions produced larger grip forces than flexion to extension exertions and radial to ulnar motion showed larger grip forces than ulnar to radial deviation. Although, males produced larger grip forces than females in all exertions, significant interactions between gender and velocity were noted.


Mind-Society ◽  
2019 ◽  
pp. 22-47
Author(s):  
Paul Thagard

Psychological explanations based on representations and procedures can be deepened by showing how they emerge from neural mechanisms. Neurons represent aspects of the world by collective patterns of firing. These patterns can be bound into more complicated patterns that can transcend the limitations of sensory inputs. Semantic pointers are a special kind of representation that operates by binding neural patterns encompassing sensory, motor, verbal, and emotional information. The semantic pointer theory applies not only to the ordinary operations of mental representations like concepts and rules but also to the most high-level kinds of human thinking, including language, creativity, and consciousness. Semantic pointers also encompass emotions, construed as bindings that combine cognitive appraisal with physiological perception.


2020 ◽  
pp. 175319342095790
Author(s):  
Bo Liu ◽  
Margareta Arianni ◽  
Feiran Wu

This study reports the arthroscopic ligament-specific repair of the triangular fibrocartilage complex (TFCC) that anatomically restores both the volar and dorsal radioulnar ligaments into their individual foveal footprints. Twenty-five patients underwent arthroscopic ligament-specific repair with clinical and radiological diagnoses of TFCC foveal avulsions. The mean age was 28 years (range 14–47) and the mean follow-up was 31 months (range 24–47). Following arthroscopic assessment, 20 patients underwent double limb radioulnar ligament repairs and five had single limb repairs. At final follow-up, there were significant improvements in wrist flexion–extension, forearm pronation–supination and grip strength. There were also significant improvements in pain and patient-reported outcomes as assessed by the patient-rated wrist evaluation, Disabilities of the Arm, Shoulder and Hand score and modified Mayo wrist scores. Arthroscopic ligament-specific repair of the TFCC does not require specialist dedicated equipment or consumables and offers a viable method of treating these injuries. Level of evidence: IV


Hand ◽  
2020 ◽  
pp. 155894472097640
Author(s):  
Nathaniel Fogel ◽  
Lauren M. Shapiro ◽  
Allison Roe ◽  
Sahitya Denduluri ◽  
Marc J. Richard ◽  
...  

Background Intra-articular distal radius fractures with small volar lunate facet fragments can be challenging to address with volar plate fixation alone. Volar locked plating with supplementary spring wire fixation has been previously described in a small series but has not been further described in the literature. We hypothesized that this technique can provide adequate fixation for volar lunate facet fragments smaller than 15 mm in length, which are at risk of displacement. Methods We completed a retrospective chart review (2015-2019) of patients who underwent volar locked plating with the addition of supplementary spring wire fixation for intra-articular distal radius fractures with a volar lunate facet fragment (<15 mm). Postoperative radiographs were assessed to evaluate union, evidence of hardware failure, escape of the volar lunate facet fragment, and postoperative volar tilt. Clinical outcome was assessed with wrist flexion/extension, arc of pronosupination, and Quick Disabilities of the Arm, Shoulder, and Hand Score ( QuickDASH) scores. Results Fifteen patients were identified, of which all went on to fracture union. There were no hardware failures or escape of the volar lunate facet fragment at final follow-up. One patient underwent hardware removal for symptoms of flexor tendon irritation. The mean wrist flexion was 59°, wrist extension was 70°, pronation was 81°, and supination was 76°. The mean QuickDASH score was 18.5. The mean postoperative volar tilt was 3.6°. Conclusions Supplementary spring wire fixation with standard volar plating provides stable fixation for lunate facet fragments less than 15 mm. This technique is a safe and reliable alternative to commercially available fragment-specific implants.


2019 ◽  
Vol 44 (9) ◽  
pp. 946-950 ◽  
Author(s):  
Stefan M. Froschauer ◽  
Maximilian Zaussinger ◽  
Dietmar Hager ◽  
Manfred Behawy ◽  
Oskar Kwasny ◽  
...  

We evaluated the outcomes of the Re-motion total wrist arthroplasty in 39 non-rheumatoid patients. The mean follow-up was 7 years (range 3–12). Postoperative wrist flexion-extension and radial-ulnar deviation as well as the scores of the Disability of Arm Shoulder and Hand questionnaire and the visual analogue scale pain scores improved significantly. Complications occurred in 13 wrists, five of which required further surgery. The most frequent complication was impingement between the scaphoid and the radial implant (n = 5), which can be avoided by complete or almost complete scaphoid resection. Periprosthetic radiolucency developed around the radial component in three cases and three radial screws loosened. Despite the incidence of high implant survival in 38 of 39 wrists over 7 years (97%), the complication rate is not satisfying. Knowledge of the risk of complications and patient selection are essential when making the decision to choose wrist arthroplasty over arthrodesis. Level of evidence: IV


Sign in / Sign up

Export Citation Format

Share Document