Phosphofructokinase activity and acidosis during short-term tetanic contractions

1991 ◽  
Vol 69 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Lawrence L. Spriet

Anaerobic energy production is essential for the production of muscular tension when the demand for energy is greater than can be provided aerobically and when oxygen is in short supply. The largest source of anaerobic energy is from the glycolytic pathway. With sustained tetanic contractions, muscle glycolytic activity is high and hydrogen ions (H+) accumulate while tension production decreases. The increasing [H+] and decreasing tension led to the suggestion that H+ inhibits the activity of the regulatory glycolytic enzyme phosphofructokinase (PFK). Early in vitro work confirmed the H+ sensitivity of PFK in the test tube, indicating that little PFK activity should persist at a pH of 6.9–7.0. However, in situ and in vivo experiments suggested that significant PFK activity was maintained during intense contractions when muscle pH decreased to 6.4–6.6. There are several concerns associated with the application of in vitro findings to in vivo exercise situations: (i) there is little in vitro work in mammalian skeletal muscle with substrate and modulator concentrations representative of exercise, (ii) most in vitro analyses of PFK activity are performed following the dilution of the enzyme in mediums with low protein concentration, and (iii) do the modulators identified in vitro exist in high enough in vivo concentrations at rest and during exercise to contribute to the regulation of PFK? More recent in vitro and in situ PFK experiments have overcome some of these concerns. They confirm that during intense, short-term tetanic contractions, PFK activity is well matched to the ATP demand despite decreases in pH to ~6.4–6.5. A combination of decreased inhibitor (ATP) and increased substrate (fructose 6-phosphate) contents coupled with increases in the contents of several positive modulators may be responsible for the maintained PFK activity. This combination reduces the pH-dependent ATP inhibition of PFK and extends the physiological pH range of the enzyme to the range normally measured during this type of muscular activity.Key words: glycolysis, phosphofructokinase, anaerobic metabolism, acidosis.

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


2021 ◽  
Author(s):  
Haimin Song ◽  
Runwei Yang ◽  
Runbin Lai ◽  
Kaishu Li ◽  
Bowen Ni ◽  
...  

Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. The current adjuvant therapies for GBM are disappointing, which are based on cytotoxicity strategy. Thus, other ways should be explored to improve the curative effect. According to the strong invasive ability of GBM cells, we assume a new treatment strategy for GBM by developing a new cell trap device (CTD) with some kind of "attractive" medium loaded in it to attract and capture the tumor cells. The in vitro experiment showed that Hepatocyte Growth Factor(HGF)presented stronger chemotaxis on C6 and U87 cell line than the Epidermal Growth Factor (EGF) and Fibroblast Growth Factor (FGF). A simple in vitro CTD loaded with HGF was made and in vivo experiments results showed that HGF successfully attracted tumor cells from tumor bed in situ into the CTD. This study proposes the new strategy for GBM treatment of "attract and trap" tumor cells is proved to be feasible.


1994 ◽  
Vol 3 (5) ◽  
pp. 397-408 ◽  
Author(s):  
Hikaru Fujioka ◽  
Peter J. Hunt ◽  
Jacek Rozga ◽  
Guo-Du Wu ◽  
Donald V. Cramer ◽  
...  

Renewed interest in the transplantation of isolated hepatocytes into the liver as a potential therapy for liver disease has stimulated the development of methods for the identification of donor cells within the recipient organ. We describe a method for cellular tagging and in vivo identification of intraportally transplanted hepatocytes using an intracellular fluorescent dye, 5(6)-carboxyfluorescein diacetate, succinimidyl-ester (CFSE). Rat and porcine hepatocytes were isolated and labelled with CFSE. The optimal conditions for labelling consisted of a buffered saline suspension of hepatocytes (5 × 106 cells/mL) in 20.0 μM CFSE incubated for 15 min at 37°C. In vitro, labelled hepatocytes were cultured either on fibronectin-coated chamber slides or in culture flasks. Cultures were evaluated in situ by fluorescence photomicrography or by fluorescence-activated cell sorting (FACS) after cell detachment. Cell viability was assessed serially and cultured, labelled hepatocytes retained the dye for up to 3 wk (last day of study). CFSE did not effect hepatocyte viability and there was no evidence of intercellular diffusion of the dye. In vivo, syngeneic Lewis rats underwent selective portal vein infusion of freshly isolated, labelled hepatocytes (2.0 × 107 cells/2.0 mL saline/animal) into the posterior liver lobes. All recipients were sacrificed 48 h and 96 h later and their livers examined. Transplanted hepatocytes were identified by fluorescence microscopy in tissue sections and by FACS following collagenase digestion of the liver tissue. CFSE persisted in a population of viable, engrafted hepatocytes. FACS analysis demonstrated that 9 ± 3% of the hepatocytes in the posterior liver lobes were labelled 48 and 96 h after transplantation. At 96 h following transplantation, multiple engrafted hepatocytes could be observed by fluorescence microscopy around the central veins. CFSE labelling allows for both in vitro identification and in vivo localization of donor hepatocytes. Furthermore, it appears to be more stable and specific for labelling hepatocytes than other tested dyes (especially DiI).


2011 ◽  
Vol 23 (8) ◽  
pp. 976 ◽  
Author(s):  
Mark Burkitt ◽  
Dawn Walker ◽  
Daniela M. Romano ◽  
Alireza Fazeli

Understanding the complex interactions between gametes, embryos and the maternal tract is required knowledge for combating infertility and developing new methods of contraception. Here we present some main aspects of spermatozoa interactions with the mammalian oviduct before fertilisation and discuss how computational modelling can be used as an invaluable aid to experimental investigation in this field. A complete predictive computational model of gamete and embryo interactions with the female reproductive tract is a long way off. However, the enormity of this task should not discourage us from working towards it. Computational modelling allows us to investigate aspects of maternal communication with gametes and embryos, which are financially, ethically or practically difficult to look at experimentally. In silico models of maternal communication with gametes and embryos can be used as tools to complement in vivo experiments, in the same way as in vitro and in situ models.


1979 ◽  
Author(s):  
D. Collen

The fibrinolytic enzyme system plays a role in the removal of fibrin from the blood vessels or urinary tract, and also in tissue repair (angiogenesis), cell transformation, macrophage function, ovulation and embryo implantation. Growing endothelial cells, malignant cells, macrophages, granulosa cells and trophoblast cells.produce plasminogen activators which activate plasminogen in the blood or interstitial fluids. Local plasmin formation appears to be a generalized mechanism involved in tissue destruction and repair. Fibrinolysis in the blood seems to be regulated by specific molecular interactions between (tissue) plasminogen activator, plasmin(ogen), fibrin and α2-antiplasmin, the physiological plasmin inhibitor. Plasmin(ogen) contains structures - lysine-binding sites - which mediate its interaction with fibrin and with α2-antiplasmin. When fibrin forms in plasma a small amount of plasminogen is bound via these structures. Plasminogen activator present or released in the blood is strongly adsorbed to the fibrin and activates bound plasminogen in situ. The formed plasmin, which remains transiently complexed to fibrin, both by its lysine-binding site(s) and active center, is only slowly inactivated by α2-antiplasmin, but plasmin which is released from digested fibrin is rapidly and irreversibly neutralized by α2-antiplasmin. Many in vitro and in vivo experiments support this hypothesis for the mechanism of fibrinolysis (Nature 272, 549,1978). Which allows speculation on more efficient therapeutic schemes for thrombolysis.


2020 ◽  
Vol 10 (12) ◽  
pp. 942
Author(s):  
Anna Volnova ◽  
Vassiliy Tsytsarev ◽  
Maria Ptukha ◽  
Mikhail Inyushin

Epilepsy remains one of the most common brain disorders, and the different types of epilepsy encompass a wide variety of physiological manifestations. Clinical and preclinical findings indicate that cerebral blood flow is usually focally increased at seizure onset, shortly after the beginning of ictal events. Nevertheless, many questions remain about the relationship between vasomotor changes in the epileptic foci and the epileptic behavior of neurons and astrocytes. To study this relationship, we performed a series of in vitro and in vivo experiments using the 4-aminopyridine model of epileptic seizures. It was found that in vitro pathological synchronization of neurons and the depolarization of astrocytes is accompanied by rapid short-term vasoconstriction, while in vivo vasodilation during the seizure prevails. We suggest that vasomotor activity during epileptic seizures is a correlate of the complex, self-sustained response that includes neuronal and astrocytic oscillations, and that underlies the clinical presentation of epilepsy.


1999 ◽  
Vol 1999 ◽  
pp. 105-105
Author(s):  
D. Hurst ◽  
D. L. Romney ◽  
A. H. Murray

Parameters from in vitro gas production and in situ degradability are often used to predict digestibility and intake in vivo. However, these methods use dried ground feed samples and cannot be expected to estimate the effect of changes in physical form or particle size. Previous work (Romney and Gill 1998) has indicated that short term intake rate (STIR) values showed potential to rank a variety of feeds in terms of their ad libitum dry matter intake, rate of passage and digestibility. Since STIR values are determined on feeds “as offered” it is likely they will reflect the effects of physical structure on in vivo parameters. The present work examines whether measurement of STIR values can be used to predict in vivo responses to changes in particle size distribution in chopped forages.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


Sign in / Sign up

Export Citation Format

Share Document