Molecular Biological Aspects of Fibrinolysis

1979 ◽  
Author(s):  
D. Collen

The fibrinolytic enzyme system plays a role in the removal of fibrin from the blood vessels or urinary tract, and also in tissue repair (angiogenesis), cell transformation, macrophage function, ovulation and embryo implantation. Growing endothelial cells, malignant cells, macrophages, granulosa cells and trophoblast cells.produce plasminogen activators which activate plasminogen in the blood or interstitial fluids. Local plasmin formation appears to be a generalized mechanism involved in tissue destruction and repair. Fibrinolysis in the blood seems to be regulated by specific molecular interactions between (tissue) plasminogen activator, plasmin(ogen), fibrin and α2-antiplasmin, the physiological plasmin inhibitor. Plasmin(ogen) contains structures - lysine-binding sites - which mediate its interaction with fibrin and with α2-antiplasmin. When fibrin forms in plasma a small amount of plasminogen is bound via these structures. Plasminogen activator present or released in the blood is strongly adsorbed to the fibrin and activates bound plasminogen in situ. The formed plasmin, which remains transiently complexed to fibrin, both by its lysine-binding site(s) and active center, is only slowly inactivated by α2-antiplasmin, but plasmin which is released from digested fibrin is rapidly and irreversibly neutralized by α2-antiplasmin. Many in vitro and in vivo experiments support this hypothesis for the mechanism of fibrinolysis (Nature 272, 549,1978). Which allows speculation on more efficient therapeutic schemes for thrombolysis.

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


1991 ◽  
Vol 69 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Lawrence L. Spriet

Anaerobic energy production is essential for the production of muscular tension when the demand for energy is greater than can be provided aerobically and when oxygen is in short supply. The largest source of anaerobic energy is from the glycolytic pathway. With sustained tetanic contractions, muscle glycolytic activity is high and hydrogen ions (H+) accumulate while tension production decreases. The increasing [H+] and decreasing tension led to the suggestion that H+ inhibits the activity of the regulatory glycolytic enzyme phosphofructokinase (PFK). Early in vitro work confirmed the H+ sensitivity of PFK in the test tube, indicating that little PFK activity should persist at a pH of 6.9–7.0. However, in situ and in vivo experiments suggested that significant PFK activity was maintained during intense contractions when muscle pH decreased to 6.4–6.6. There are several concerns associated with the application of in vitro findings to in vivo exercise situations: (i) there is little in vitro work in mammalian skeletal muscle with substrate and modulator concentrations representative of exercise, (ii) most in vitro analyses of PFK activity are performed following the dilution of the enzyme in mediums with low protein concentration, and (iii) do the modulators identified in vitro exist in high enough in vivo concentrations at rest and during exercise to contribute to the regulation of PFK? More recent in vitro and in situ PFK experiments have overcome some of these concerns. They confirm that during intense, short-term tetanic contractions, PFK activity is well matched to the ATP demand despite decreases in pH to ~6.4–6.5. A combination of decreased inhibitor (ATP) and increased substrate (fructose 6-phosphate) contents coupled with increases in the contents of several positive modulators may be responsible for the maintained PFK activity. This combination reduces the pH-dependent ATP inhibition of PFK and extends the physiological pH range of the enzyme to the range normally measured during this type of muscular activity.Key words: glycolysis, phosphofructokinase, anaerobic metabolism, acidosis.


2000 ◽  
Vol 84 (08) ◽  
pp. 299-306 ◽  
Author(s):  
Kristian Bangert ◽  
Sixtus Thorsen

SummaryAn improved sensitive, specific, precise and accurate assay of plasminogen in rat plasma was developed. It is performed in 96-well microtiter plates and can be completed within one hour. The assay is based on activation of plasminogen by human urokinase-type plasminogen activator (uPA) and simultaneous measurement of generated plasmin with the specific plasmin substrate H-D-Val-Phe-Lys-4-nitroanilide (S-2390), using purified native rat plasminogen for calibration. The concentration of S-2390 in the final reaction mixture during the whole reaction period is much greater than the K m value (≈20 µM) for rat plasmin-cleavage of S-2390 ensuring that hydrolysis of substrate follows zero order kinetics and that the substrate produces a 20-35 fold decrease in rate of inhibition of plasmin by its target inhibitors in plasma. Analogous to the human system the target plasma inhibitors of rat plasmin are shown to be plasmin inhibitor and α-macroglobulins. Tranexamic acid (0.8 mM) is incorporated in the reaction mixture resulting in a 19-fold increase in the rate of plasminogen activation and presumably an about 50-fold decrease in the rate of inhibition of generated plasmin by plasmin inhibitor. The assay is suitable for accurate measurement of plasminogen in samples obtained from animals containing pharmacological concentrations of uPA or tissue-type plasminogen activator (tPA) in their plasma when in vitro plasminogen activation is blocked at pH 5 by collecting blood in acidic anticoagulant. Judged from in vitro experiments formation of catalytic active plasmin-α-macroglobulin complexes during massive activation of plasminogen in vivo does not interfere with the assay.


2021 ◽  
Author(s):  
Haimin Song ◽  
Runwei Yang ◽  
Runbin Lai ◽  
Kaishu Li ◽  
Bowen Ni ◽  
...  

Glioblastoma multiforme (GBM) is the most malignant adult brain tumor. The current adjuvant therapies for GBM are disappointing, which are based on cytotoxicity strategy. Thus, other ways should be explored to improve the curative effect. According to the strong invasive ability of GBM cells, we assume a new treatment strategy for GBM by developing a new cell trap device (CTD) with some kind of "attractive" medium loaded in it to attract and capture the tumor cells. The in vitro experiment showed that Hepatocyte Growth Factor(HGF)presented stronger chemotaxis on C6 and U87 cell line than the Epidermal Growth Factor (EGF) and Fibroblast Growth Factor (FGF). A simple in vitro CTD loaded with HGF was made and in vivo experiments results showed that HGF successfully attracted tumor cells from tumor bed in situ into the CTD. This study proposes the new strategy for GBM treatment of "attract and trap" tumor cells is proved to be feasible.


2011 ◽  
Vol 23 (8) ◽  
pp. 976 ◽  
Author(s):  
Mark Burkitt ◽  
Dawn Walker ◽  
Daniela M. Romano ◽  
Alireza Fazeli

Understanding the complex interactions between gametes, embryos and the maternal tract is required knowledge for combating infertility and developing new methods of contraception. Here we present some main aspects of spermatozoa interactions with the mammalian oviduct before fertilisation and discuss how computational modelling can be used as an invaluable aid to experimental investigation in this field. A complete predictive computational model of gamete and embryo interactions with the female reproductive tract is a long way off. However, the enormity of this task should not discourage us from working towards it. Computational modelling allows us to investigate aspects of maternal communication with gametes and embryos, which are financially, ethically or practically difficult to look at experimentally. In silico models of maternal communication with gametes and embryos can be used as tools to complement in vivo experiments, in the same way as in vitro and in situ models.


Reproduction ◽  
2013 ◽  
Vol 145 (6) ◽  
pp. 577-585 ◽  
Author(s):  
Xue-Chao Tian ◽  
Qu-Yuan Wang ◽  
Dang-Dang Li ◽  
Shou-Tang Wang ◽  
Zhan-Qing Yang ◽  
...  

The aim of this study was to examine the expression and regulation of the crystallin, alpha B (Cryab) gene in mouse uterus during the peri-implantation period by in situ hybridization and real-time PCR. There was no detectable Cryab mRNA signal on days 1–4 of pregnancy. On day 5 of pregnancy when embryo implanted, a high level of Cryab mRNA signal was found in the subluminal stroma surrounding the implanting blastocyst. On days 6–8, Cryab mRNA was strongly expressed in the primary decidua. By real-time PCR, a high level of Cryab expression was detected on days 7 and 8 of pregnancy, although Cryab expression was seen from days 1 to 8. Under in vivo and in vitro artificial decidualization, Cryab expression was significantly elevated. Compared with the progesterone-primed delayed implantation uterus, a high level of Cryab mRNA expression was observed in estrogen-activated implantation uterus. In the uterine stromal cells, cAMP, estrogen, and progesterone could induce the expression of Cryab gene. In the ovariectomized mouse uterus, estrogen could also induce the expression of Cryab while progesterone inhibited its expression. Our data suggest that Cryab may play an important role during mouse embryo implantation and decidualization and that estrogen and progesterone can regulate the expression of Cryab gene.


Reproduction ◽  
2018 ◽  
Vol 155 (4) ◽  
pp. 393-402 ◽  
Author(s):  
Yue Zhang ◽  
Mingyun Ni ◽  
Na Liu ◽  
Yongjiang Zhou ◽  
Xuemei Chen ◽  
...  

Embryo implantation is a complex process involving synchronised crosstalk between a receptive endometrium and functional blastocysts. Apoptosis plays an important role in this process as well as in the maintenance of pregnancy. In this study, we analysed the expression pattern of programmed cell death 4 (Pdcd4), a gene associated with apoptosis in the mouse endometrium, during early pregnancy and pseudopregnancy by real-time quantitative polymerase chain reaction, in situ hybridisation, Western blotting and immunohistochemistry. The results showed that Pdcd4 was increased along with days of pregnancy and significantly reduced at implantation sites (IS) from day 5 of pregnancy (D5). The level of Pdcd4 at IS was substantially lower than that at interimplantation sites (IIS) on D6 and D7. In addition, Pdcd4 expression in the endometrium was reduced in response to artificially induced decidualisation in vivo and in vitro. Downregulation of Pdcd4 gene expression in cultured primary stromal cells promoted decidualisation, while upregulation inhibited the decidualisation process by increasing apoptosis. These results demonstrate that Pdcd4 is involved in stromal cell decidualisation by mediating apoptosis and therefore plays a role in embryo implantation in mice.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


1993 ◽  
Vol 70 (02) ◽  
pp. 301-306 ◽  
Author(s):  
Linda A Robbie ◽  
Nuala A Booth ◽  
Alison M Croll ◽  
Bruce Bennett

SummaryThe relative importance of the two major inhibitors of fibrinolysis, α2-antiplasmin (α2-AP) and plasminogen activator inhibitor (PAI-1), were investigated using a simple microtitre plate system to study fibrin clot lysis in vitro. Cross-linked fibrin clots contained plasminogen and tissue plasminogen activator (t-PA) at concentrations close to physiological. Purified α2-AP and PAI-1 caused dose-dependent inhibition. All the inhibition due to normal plasma, either platelet-rich or poor, was neutralised only by antibodies to α2-AP. Isolated platelets, at a final concentration similar to that in blood, 2.5 × 108/ml, markedly inhibited clot lysis. This inhibition was neutralised only by antibodies to PAI-1. At the normal circulating ratio of plasma to platelets, α2-AP was the dominant inhibitor. When the platelet:plasma ratio was raised some 20-fold, platelet PAI-1 provided a significant contribution. High local concentrations of PAI-1 do occur in thrombi in vivo, indicating a role for PAI-1, complementary to that of α2-AP, in such situations.


1983 ◽  
Vol 50 (02) ◽  
pp. 518-523 ◽  
Author(s):  
C Kluft ◽  
A F H Jie ◽  
R A Allen

SummaryFunctional assay of extrinsic (tissue-type) plasminogen activator (EPA) in plasma on fibrin plates was evaluated. Using specific quenching antibodies, we demonstrated the method to be specific for EPA under all conditions tested. Contributions of urokinases and intrinsic activators were excluded. The quantity of EPA in blood samples, as compared with purified uterine tissue activator, shows 1 blood activator unit (BAU) to be comparable to 0.93 ng.The median values for EPA activity for healthy volunteers were: baseline, 1.9 BAU/ml (n = 123); diurnal, 5.5 BAU/ml (n = 12); DDAVP administration, 11.7 BAU/ml (n = 39); exhaustive exercise, 25 BAU/ml (n = 24); venous occlusion (15 min), 35 BAU/ml (n = 61). A large inter-individual variation in EPA activity was found, while individual baseline values tended to be constant for periods of weeks.In vitro in blood EPA activity shows a disappearance of 50% in about 90 min at 37° C; EPA activity in euglobulin fractions is stable for ≤2 hr at 37° C.A rapid decrease in EPA activity occurs in vivo, as noted after extracorporal circulation and exercise stimulation (t½ decay, 2-5 min).


Sign in / Sign up

Export Citation Format

Share Document