Endothelial adhesion molecules and their role in inflammation

1993 ◽  
Vol 71 (1) ◽  
pp. 76-87 ◽  
Author(s):  
C. Wayne Smith

The emigration of leukocytes such as neutrophils into inflammatory sites requires adhesion to the endothelium of small venules. The initial adhesive event is margination characterized by rolling of neutrophils along the luminal surface of the endothelium. Each member of the selectin family of adhesion molecules has been shown to support neutrophil rolling under conditions of flow. E-selectin is synthesized by endothelial cells following cytokine stimulation, P-selectin is rapidly mobilized from Weibel–Palade bodies to the endothelial cell surface following stimulation with agents such as histamine, and L-selectin is constitutively expressed on the surface of leukocytes. Each selectin functions primarily as a lectin, recognizing carbohydrate structures on the leukocyte or endothelial cell surface. Once the marginated neutrophil forms a stationary adhesion with endothelial cells, it is stimulated by chemotactic factors to downregulate the selectin-based adhesion and upregulate adherence dependent on β2-integrins, principally CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1). These adhesion molecules interact with intercellular adhesion molecule 1 (ICAM-1) and possibly other structures on the endothelial cell, and the leukocyte rapidly emigrates into surrounding tissue. Transendothelial migration in vitro is markedly inhibited by monoclonal antibodies against CD18 integrins or ICAM-1. Monoclonal antibodies against the selectins, CD18, CD11a, CD11b, and ICAM-1 have all been shown to significantly reduce the influx of neutrophils into sites of inflammation in various animal models.Key words: adhesion, integrins, selectins, leukocytes, endothelial cells.

Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 404-411 ◽  
Author(s):  
S Buysmann ◽  
FJ Bemelman ◽  
PT Schellekens ◽  
Y van Kooyk ◽  
CG Figdor ◽  
...  

Abstract We investigated the mechanism by which antihuman CD3 monoclonal antibodies of the isotypes IgG2a (eg, OKT3) and IgA (eg, IXA) can induce the rapid disappearance of virtually all circulating T lymphocytes. We hypothesize that upregulation of adhesion molecules on the lymphocyte membrane contributes to this effect. However, this hypothesis is difficult to test, because of the inherent lymphocytopenia and/or shifts in lymphocyte populations between intra and extra-vascular compartments. Therefore, studies in vitro were performed, as well. Analysis of peripheral blood lymphocytes isolated at several times after addition of OKT3 or IXA to whole blood of healthy individuals showed an immediate increase in the proportion of T cells expressing NKI-L16, an activation epitope on CD11a/CD18. Likewise, an increase in CD11b/CD18 expression occurred. In parallel experiments, a transiently increased adhesion of T cells to endothelial cell monolayers was observed. This adhesion could be completely blocked by anti-CD18 or anti-CD11a monoclonal antibodies and only partly by an anti-CD11b antibody. Our data indicate that upregulation of activation epitopes of CD11a/CD18, as well as increased expression of CD11b/CD18 on T lymphocytes, may result in increased adhesion of these cells to intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 on vascular endothelium. This phenomenon may, at least, partly explain the rapidly occurring peripheral lymphocytopenia observed in vivo.


Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 404-411 ◽  
Author(s):  
S Buysmann ◽  
FJ Bemelman ◽  
PT Schellekens ◽  
Y van Kooyk ◽  
CG Figdor ◽  
...  

We investigated the mechanism by which antihuman CD3 monoclonal antibodies of the isotypes IgG2a (eg, OKT3) and IgA (eg, IXA) can induce the rapid disappearance of virtually all circulating T lymphocytes. We hypothesize that upregulation of adhesion molecules on the lymphocyte membrane contributes to this effect. However, this hypothesis is difficult to test, because of the inherent lymphocytopenia and/or shifts in lymphocyte populations between intra and extra-vascular compartments. Therefore, studies in vitro were performed, as well. Analysis of peripheral blood lymphocytes isolated at several times after addition of OKT3 or IXA to whole blood of healthy individuals showed an immediate increase in the proportion of T cells expressing NKI-L16, an activation epitope on CD11a/CD18. Likewise, an increase in CD11b/CD18 expression occurred. In parallel experiments, a transiently increased adhesion of T cells to endothelial cell monolayers was observed. This adhesion could be completely blocked by anti-CD18 or anti-CD11a monoclonal antibodies and only partly by an anti-CD11b antibody. Our data indicate that upregulation of activation epitopes of CD11a/CD18, as well as increased expression of CD11b/CD18 on T lymphocytes, may result in increased adhesion of these cells to intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 on vascular endothelium. This phenomenon may, at least, partly explain the rapidly occurring peripheral lymphocytopenia observed in vivo.


2000 ◽  
Vol 9 (3) ◽  
pp. A185
Author(s):  
Michael P. Vallely ◽  
Paul G. Bannon ◽  
Clifford F. Hughes ◽  
Leonard Kritharides

Blood ◽  
1991 ◽  
Vol 78 (8) ◽  
pp. 2089-2097 ◽  
Author(s):  
MB Furie ◽  
MC Tancinco ◽  
CW Smith

Abstract Intercellular adhesion molecule-1 (ICAM-1) is present on the endothelium and binds to one or more members of the CD11/CD18 family of leukocyte surface integrins. To assess the role of these molecules in mediating chemotaxis of neutrophils across the endothelium, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. Neutrophils placed on the apical sides of these cultures migrated across the endothelium in response to chemoattractants added basally. Monoclonal antibodies (MoAbs) to CD11a, CD11b, and CD18 on the neutrophils inhibited this migration by 52% +/- 11%, 29% +/- 19%, and 90% +/- 7%, respectively. An MoAb to ICAM-1 inhibited transendothelial chemotaxis of the leukocytes by 55% +/- 16%. Inhibition was mediated by binding of the MoAb to ICAM-1 on the HUVEC, rather than by any direct effect of the antibody on the neutrophils. When used in combination, MoAbs to CD11a and to CD11b inhibited migration in a nearly additive fashion. A similar additive effect was observed when MoAbs to CD11b and to ICAM-1 were used together. In contrast, MoAbs to CD11a and to ICAM-1 produced no more inhibition when used in combination than when added singly. These results show that ICAM-1, CD11a/CD18, and CD11b/CD18 all participate in controlling migration of neutrophils across endothelial monolayers in response to chemotactic agents.


1987 ◽  
Author(s):  
Freek van Iwaarden ◽  
G Philip ◽  
de Groot ◽  
Bonno N Bouma

The presence of High Molecular Weight kininogen (HMWK) was demonstrated in cultured human endothelial cells (EC) by immunofluorescence techniques. Using an enzyme linked immunosorbent assay a concentration of 58 ng HMWK/10 cells was determined. Immunoprecipitation studies performed with lysed metabolically labelled endothelial cells and mono-specific antisera directed against HMWK suggested that HMWK is not synthesized by the endothelial cells. Endothelial cells cultured in the presence of HMWK-depleted serum did not contain HMWK. This, suggests that endothelial cells can internalize HMWK. Using 125I-HMWK it was demonstrated that cultured endothelial cells bind HMWK in a time-dependent, specific and saturable.way. The cells were found to internalize 125I-HMWK, since I-HMWK was detected in solubilized endothelial cells after the cell bound 125I-HMWK had been eluted with dextran sulphate.The binding of I-HMWK required the presence of zinc ions. Optimal binding of 125I-HMWK was observed at 50 μM Zn++ . Calcium ions inhibited the Zn++ dependent binding of 125I-HMWK |25EC. In the presence of 3 mM CaCl2 the total binding of 125I-HMWK was significantly decreased, and a .concentration of 200 μM Zn++ was Required for the binding of 125I-HMWK to thecells. Higher,. Ca concentrations did not further decrease the binding of 125I-HMWK. Analysis of tl^e binding data by the ligand computer program indicated 3.2 x 10 binding sites per cell for HMWK with a Kd of 35 nM at 50 μM ZnCl2 and 1 mM CaCl2. Specify binding of HMWK did also occur at physiological plasma Zn++ concentrations. Half maximal binding was observed at HMWK concentrations of ± 105 nM at 10 μM ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 pM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway. M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 10 molecules of HMWK bound per cell and at 80 nM with 2.8 x 10 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway.M ZnCl2 and 45 nM at 25 μM ZnCl2. The HMWK binding sites were saturatecT at HMWK concentrations of 130 nM with 1.6 x 16 molecules of HMWK bound per cell and at 80 nM with 2.8 x 106 molecules of HMWK bound per cell at 10 and 25 μM ZnCl2 respectively. These results suggest that at physiological zinc, calcium and HMWK concentrations the HMWK binding sites on the endothelial cell are saturated. The presence of HMWK on the endothelial cell surface may play a role in the initiation of the intrinsic coagulation pathway.


1977 ◽  
Author(s):  
C. Busch ◽  
B. Glimelius ◽  
Å Wastesson ◽  
B. Westermark

The non-thrombogenic property of the endothelial cell surface is a prerequisite for maintainance of blood circulation. The nature of this property is poorly understood. Recent advances in culturing techniques of endothelial cells in vitro may facilitate studies of the surface biochemistry. Human endothelial cells (EC) isolated from umbilical veins were shown to synthesize and secrete sulphated glycosaminoglycans (GAG). The recent finding of a platelet enzyme capable of degrading heparin sulphate (HS) raised the question:Can platelet lysate or a purified heparitinase detach and degrade endothelial HS? EC cultured in the presence of 35S-sulphate, produce 35S-labelled GAG which was isolated from the incubation medium from a cell associated trypsin labile pool and from a cellular pool not liberated by trypsin. After 48 hours of incorporation about 95% of 35S-GAG was found in the medium fraction, 5% in the trypsin fraction and negligible amounts in the cell fraction. In the trypsin pool (“surface fraction”) heparin sulphate comprised about 85%, while the remaining 15% consisted of chondroitin sulphate and/or dermatan sulphate. Incubation of 35S-labelled EC with platelet lysate or a partially purified preparation of the enzyme from the same source caused a marked release of cell-surface associated HS to the incubation medium as oligosaccharides. These effects could be ascribed to heparitinase activity and may alter the properties of the EC-surface and influence the interaction between these cells on one hand and blood cells or plasma components, e.g., coagulation factors on the other.


2013 ◽  
Vol 109 (06) ◽  
pp. 1070-1078 ◽  
Author(s):  
Zhanyang Yu ◽  
Xiang Fan ◽  
Ning Liu ◽  
Min Yan ◽  
Zhong Chen ◽  
...  

SummaryHyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes.


Sign in / Sign up

Export Citation Format

Share Document