scholarly journals Influence of sodium inward current on the dynamical behaviour of modified Morris-Lecar model

2022 ◽  
Vol 95 (1) ◽  
Author(s):  
H. O. Fatoyinbo ◽  
S. S. Muni ◽  
A. Abidemi
2020 ◽  
Vol 14 (3) ◽  
pp. 7235-7243
Author(s):  
N.M. Ali ◽  
F. Dzaharudin ◽  
E.A. Alias

Microbubbles have the potential to be used for diagnostic imaging and therapeutic delivery. However, the transition from microbubbles currently being used as ultrasound contrast agents to achieve its’ potentials in the biomedical field requires more in depth understanding. Of particular importance is the influence of microbubble encapsulation of a microbubble near a vessel wall on the dynamical behaviour as it stabilizes the bubble. However, many bubble studies do not consider shell encapsulation in their studies. In this work, the dynamics of an encapsulated microbubble near a boundary was studied by numerically solving the governing equations for microbubble oscillation. In order to elucidate the effects of a boundary to the non-linear microbubble oscillation the separation distances between microbubble will be varied along with the acoustic driving. The complex nonlinear vibration response was studied in terms of bifurcation diagrams and the maximum radial expansion. It was found that the increase in distance between the boundary and the encapsulated bubble will increase the oscillation amplitude. When the value of pressure amplitude increased the single bubble is more likely to exhibit the chaotic behaviour and maximum radius also increase as the inter wall-bubble distance is gradually increased. While, with higher driving frequency the maximum radial expansion decreases and suppress the chaotic behaviour.


1991 ◽  
Vol 261 (6) ◽  
pp. F933-F944 ◽  
Author(s):  
B. N. Ling ◽  
C. F. Hinton ◽  
D. C. Eaton

Patch-clamp methodology was applied to principal cell apical membranes of rabbit cortical collecting tubule (CCT) primary cultures grown on collagen supports in the presence of aldosterone (1.5 microM). The most frequently observed channel had a unit conductance of 3-5 pS, nonlinear current-voltage (I-V) relationship, Na permeability (PNa)-to-K permeability (PK) ratio greater than 19:1, and inward current at all applied potentials (Vapp) less than +80 mV (n = 41). Less frequently, an 8- to 10-pS channel with a linear I-V curve, PNa/PK less than 5:1, and inward current at Vapp less than +40 mV was also observed (n = 7). Luminal amiloride (0.75 microM) decreased the open probability (Po) for both of these channels. Mean open time for the high-selectivity Na+ channel was 2.1 +/- 0.5 s and for the low-selectivity Na+ channel was 50 +/- 12 ms. In primary cultures grown without aldosterone the high-selectivity Na+ channel was rarely observed (1 of 32 patches). Lastly, a 26- to 35-pS channel, nonselective for Na+ over K+, was not activated by cytoplasmic Ca2+ or voltage nor inhibited by amiloride (n = 17). We conclude that under specific growth conditions, namely permeable transporting supports and chronic mineralocorticoid hormone exposure, principal cell apical membranes of rabbit CCT primary cultures contain 1) both high-selectivity and low-selectivity, amiloride-inhibitable Na+ channels and 2) amiloride-insensitive, nonselective cation channels.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1657
Author(s):  
Jochen Merker ◽  
Benjamin Kunsch ◽  
Gregor Schuldt

A nonlinear compartment model generates a semi-process on a simplex and may have an arbitrarily complex dynamical behaviour in the interior of the simplex. Nonetheless, in applications nonlinear compartment models often have a unique asymptotically stable equilibrium attracting all interior points. Further, the convergence to this equilibrium is often wave-like and related to slow dynamics near a second hyperbolic equilibrium on the boundary. We discuss a generic two-parameter bifurcation of this equilibrium at a corner of the simplex, which leads to such dynamics, and explain the wave-like convergence as an artifact of a non-smooth nearby system in C0-topology, where the second equilibrium on the boundary attracts an open interior set of the simplex. As such nearby idealized systems have two disjoint basins of attraction, they are able to show rate-induced tipping in the non-autonomous case of time-dependent parameters, and induce phenomena in the original systems like, e.g., avoiding a wave by quickly varying parameters. Thus, this article reports a quite unexpected path, how rate-induced tipping can occur in nonlinear compartment models.


Author(s):  
Ji Yeon Lee ◽  
Haifeng Zheng ◽  
Kenton M. Sanders ◽  
Sang Don Koh

We characterized the two types of voltage-dependent inward currents in murine antral SMC. The HVA and LVA inward currents were identified when cells were bathed in Ca2+-containing physiological salt solution. We examined whether the LVA inward current was due to: 1) T-type Ca2+ channels, 2) Ca2+-activated Cl- channels, 3) non-selective cation channels (NSCC) or 4) voltage-dependent K+ channels with internal Cs+-rich solution. Replacement of external Ca2+ (2 mM) with equimolar Ba2+ increased the amplitude of the HVA current but blocked the LVA current. Nicardipine blocked the HVA current, and in the presence of nicardipine, T-type Ca2+ blockers failed to block LVA. The Cl- channel antagonist had little effect on LVA. Cation-free external solution completely abolished both HVA and LVA. Addition of Ca2+ in cation-free solution restored only HVA currents. Addition of K+ (5 mM) to cation-free solution induced LVA current that reversed at -20 mV. These data suggest that LVA is not due to T-type Ca2+ channels, Ca2+-activated Cl- channels or NSCC. Antral SMC express A-type K+ currents (KA) and delayed rectifying K+ currents (KV) with dialysis of high K+ (140 mM) solution. When cells were exposed to high K+ external solution with dialysis of Cs+-rich solution in the presence of nicardipine, LVA was evoked and reversed at positive potentials. These HK-induced inward currents were blocked by K+ channel blockers, 4-aminopyridine and TEA. In conclusion, LVA inward currents can be generated by K+ influx via KA and KV channels in murine antral SMC when cells were dialyzed with Cs+-rich solution.


2021 ◽  
Vol 36 ◽  
pp. 102896
Author(s):  
Angelo Mazzù ◽  
Stefano Uberti ◽  
Ileana Bodini ◽  
Diego Paderno ◽  
Andrea Danesi

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


1995 ◽  
Vol 269 (3) ◽  
pp. G378-G385 ◽  
Author(s):  
Z. Xiong ◽  
N. Sperelakis ◽  
A. Noffsinger ◽  
C. Fenoglio-Preiser

Voltage-gated Ca2+ currents were investigated in single smooth muscle cells freshly isolated from the circular layer of the human colon (ascending and descending portions) using the whole cell voltage-clamp technique. Tissue samples were obtained at the time of therapeutic surgery. In physiological salt solution (containing 2 mM Ca2+), an inward current was observed when the cell membrane was depolarized in the presence of tetrodotoxin. This current disappeared when Ca2+ was removed from the bath solution and was inhibited when Ca2+ channel blockers were applied, indicating that the inward current was a Ca2+ current (ICa). Changing the holding potential (HP) from -100 mV to more positive potentials (e.g., -60 and -40 mV) markedly decreased the amplitude of ICa. The voltage dependence of steady-state activation and inactivation was represented by Boltzmann distributions; there was a substantial amount of overlap (window current) between -60 and -10 mV. A fast-inactivating ICa component followed by a slow-inactivating ICa component was observed in some cells from both ascending and descending colons. The fast ICa component was observed only when cells were held at -80 or -100 mV, and had a more negative threshold potential (-70 to -60 mV). This component was sensitive to low concentrations of Ni2+ (30 microM) but was resistant to nifedipine (10-20 microM). In contrast, the slow (sustained) ICa component was observed at all HPs (-40 to -100 mV) and had a more positive threshold potential (about -40 mV). This component was insensitive to low concentration of Ni2+ but was sensitive to nifedipine and BAY K 8644.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document