scholarly journals Power law plateau inflation potential in the RS II braneworld evading swampland conjecture

2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Rathin Adhikari ◽  
Mayukh R. Gangopadhyay ◽  
Yogesh

AbstractIn the recent time, inflationary cosmology is facing an existential crisis due to the proposed Swampland criterion which aims to evade any (meta-)stable de Sitter construction within the String landscape. It is been realised that a single field slow roll inflation is inconsistent with the Swampland criterion unless the inflationary model is realised in some non-standard scenario such as Warm inflation or the Braneworld scenario. Dimopoulos and Owen (Phys Rev D 94(6): 063518, 2016) introduced a new class of model of inflation dubbed as the power law plateau inflation in the standard cold inflationary scenario. But to realise this model in the standard scenario consistent with observation, they had to introduce a phase of thermal inflation. In this paper we have analysed this model in the braneworld scenario to show that for some choice of the parameters defining the model class, one can have an observationally consistent power law plateau without any phase of thermal inflation. We have also shown that, for the correct choice of model parameters, one can easily satisfy the Swampland criterion. Besides, for correct choice of equation of states ($$w_{re}$$ w re ), one can also satisfy the recently proposed Trans–Planckian Censorship Conjecture (TCC).

2017 ◽  
Vol 32 (21) ◽  
pp. 1750114 ◽  
Author(s):  
Kazuharu Bamba ◽  
Sergei D. Odintsov ◽  
Emmanuel N. Saridakis

We investigate the inflationary realization in the context of unimodular F(T) gravity, which is based on the F(T) modification of teleparallel gravity, in which one imposes the unimodular condition through the use of Lagrange multipliers. We develop the general reconstruction procedure of the F(T) form that can give rise to a given scale-factor evolution, and then we apply it in the inflationary regime. We extract the Hubble slow-roll parameters that allow us to calculate various inflation-related observables, such as the scalar spectral index and its running, the tensor-to-scalar ratio, and the tensor spectral index. Then, we examine the particular cases of de Sitter and power-law inflation, of Starobinsky inflation, as well as inflation in a specific model of unimodular F(T) gravity. As we show, in all cases the predictions of our scenarios are in a very good agreement with Planck observational data. Finally, inflation in unimodular F(T) gravity has the additional advantage that it always allows for a graceful exit for specific regions of the model parameters.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850188 ◽  
Author(s):  
E. Elizalde ◽  
S. D. Odintsov ◽  
E. O. Pozdeeva ◽  
S. Yu. Vernov

The cosmological dynamics of a non-locally corrected gravity theory, involving a power of the inverse d’Alembertian, is investigated. Casting the dynamical equations into local form, the fixed points of the models are derived, as well as corresponding de Sitter and power-law solutions. Necessary and sufficient conditions on the model parameters for the existence of de Sitter solutions are obtained. The possible existence of power-law solutions is investigated, and it is proven that models with de Sitter solutions have no power-law solutions. A model is found, which allows to describe the matter-dominated phase of the Universe evolution.


2016 ◽  
Vol 25 (10) ◽  
pp. 1650098 ◽  
Author(s):  
R. D. Boko ◽  
M. J. S. Houndjo ◽  
J. Tossa

We have studied in this paper, the stability of dynamical system in [Formula: see text] gravity. We have considered the [Formula: see text] [Formula: see text]-gravity and explored its dynamical analysis. We found six critical points among which only one describes a universe filled of both matter and dominated dark energy. It is shown that these critical points present specific phase spaces described by the corresponding fluids. Furthermore, we have investigated the stability conditions of these critical points and find that these conditions are dependent of the model parameters. We also study the stability of a new power-law [Formula: see text] model with de Sitter and power law solutions.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Arjun Berera ◽  
Suddhasattwa Brahma ◽  
Jaime R. Calderón

Abstract Motivated by the old trans-Planckian (TP) problem of inflationary cosmology, it has been conjectured that any consistent effective field theory should keep TP modes ‘hidden’ behind the Hubble horizon, so as to prevent them from turning classical and thereby affecting macroscopic observations. In this paper we present two arguments against the Hubble horizon being a scale of singular significance as has been put forward in the TP Censorship Conjecture (TCC). First, refinements of TCC are presented that allow for the TP modes to grow beyond the horizon while still keeping the de-Sitter conjecture valid. Second, we show that TP modes can turn classical even well within the Hubble horizon, which, as such, negates this rationale behind keeping them from crossing it. The role of TP modes is known to be less of a problem in warm inflation, because fluctuations start out usually as classical. This allows warm inflation to be more resilient to the TP problem compared to cold inflation. To understand how robust this is, we identity limits where quantum modes can affect the primordial power spectrum in one specific case.


2009 ◽  
Vol 18 (09) ◽  
pp. 1395-1411 ◽  
Author(s):  
LEONARDO CAMPANELLI

We analyze the generation of seed magnetic fields during de Sitter inflation considering a noninvariant conformal term in the electromagnetic Lagrangian of the form [Formula: see text], where I(ϕ) is a pseudoscalar function of a nontrivial background field ϕ. In particular, we consider a toy model that could be realized owing to the coupling between the photon and either a (tachyonic) massive pseudoscalar field or a massless pseudoscalar field nonminimally coupled to gravity, where I follows a simple power law behavior I(k,η) = g/(-kη)β during inflation, while it is negligibly small subsequently. Here, g is a positive dimensionless constant, k the wave number, η the conformal time, and β a real positive number. We find that only when β = 1 and 0.1 ≲ g ≲ 2 can astrophysically interesting fields be produced as excitation of the vacuum, and that they are maximally helical.


Author(s):  
Xinjun Yang ◽  
Xiang Ling

The creep behaviors of TA2 and R60702 at low and intermediate temperature were presented and discussed in this paper. Experimental results indicated that an apparent threshold stress was exhibited in the creep deformation of R60702. Meanwhile, the primary creep phase was found as the main pattern in the room temperature creep behavior of TA2. Compared with the exponential law, the power law has been proved to be a proper constitutive model in the description of primary creep phase. It also showed that θ projection method had its significant advantage in the evaluation of accelerated creep stage. Thus, a composite model which combined power law with θ projection method was applied in the creep curves evaluation at low and intermediate temperature. Based on the multiaxial creep deformation results, the model was modified and discussed. A linear relationship existed between composite model parameters and applied load. Finally, the creep life of TA2 and R60702 could be accurately predicted by the composite model, and it is suitable for the application in low and intermediate temperature creep life analysis.


2020 ◽  
Vol 17 (06) ◽  
pp. 2050085
Author(s):  
José Antonio Belinchón ◽  
Danae Polychroni

We study a string inspired cosmological with variable potential through the Lagrangian invariance method in order to determine the form of the potential. We have studied four cases by combining the different fields, that is, the dilaton [Formula: see text] the potential [Formula: see text] the [Formula: see text]-field and the matter field (a perfect fluid). In all the studied cases, we found that the potential can only take two possible forms: [Formula: see text] and [Formula: see text] where [Formula: see text] and [Formula: see text] are numerical constants. We conclude that when we take into account the Kalb–Ramond field, i.e. the [Formula: see text]-field, then it is only possible to get a constant potential, [Formula: see text] Nevertheless, if this field is not considered, then we get two possible solutions for the potential: [Formula: see text] and [Formula: see text] In all the cases, if the potential is constant, [Formula: see text] then we get a de Sitter like solution for the scale factor of the metric, [Formula: see text], which verifies the [Formula: see text]-duality property, while if the potential varies, then we get a power-law solution for the scale factor, [Formula: see text] [Formula: see text]


2019 ◽  
Vol 16 (10) ◽  
pp. 1950149 ◽  
Author(s):  
M. Ilyas

We investigate the different energy conditions in non-local gravity, which is obtained by adding an arbitrary function of d’Alembertian operator, [Formula: see text], to the Hilbert–Einstein action. We analyze the validity of four different energy conditions and illustrate the different constraints over parameters of the power-law solution as well as de Sitter solution.


2015 ◽  
Vol 24 (11) ◽  
pp. 1530025 ◽  
Author(s):  
Katsuhiko Sato ◽  
Jun'ichi Yokoyama

Starting with an account of historical developments in Japan and Russia, we review inflationary cosmology and its basic predictions in a pedagogical manner. We also introduce the generalized G-inflation model, in terms of which all the known single-field inflation models may be described. This formalism allows us to analyze and compare the many inflationary models that have been proposed simultaneously and within a common framework. Finally, current observational constraints on inflation are reviewed, with particular emphasis on the sensitivity of the inferred constraints to the choice of datasets used.


Sign in / Sign up

Export Citation Format

Share Document