scholarly journals On the regularization of Lifshitz-type field theories

2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Alfio Bonanno ◽  
Miok Park ◽  
Lesław Rachwał ◽  
Dario Zappalà

AbstractWe consider Lifshitz-type scalar theories with explicit breaking of the Lorentz symmetry that, in addition, exhibit anisotropic scaling laws near the ultraviolet fixed point. Using the proper time regularization method on the spatial coordinates only, we derive the regularized form of the one-loop effective potential in such theories. We study the main features of the one-loop effective potential and, also, the RG flow of the scale-dependent potential both in the IR and UV regimes. The beta functions for the couplings are derived.

1995 ◽  
Vol 10 (19) ◽  
pp. 2819-2839 ◽  
Author(s):  
JORDI COMELLAS ◽  
PETER E. HAAGENSEN ◽  
JOSÉ I. LATORRE

We derive, based only on simple principles of renormalization in coordinate space, closed renormalized amplitudes and renormalization group constants at one- and two-loop orders for scalar field theories in general backgrounds. This is achieved through a renormalization procedure we develop exploiting the central idea behind differential renormalization, which needs as the only inputs the propagator and the appropriate Laplacian for the backgrounds in question. We work out this coordinate space renormalization in some detail, and subsequently back it up with specific calculations for scalar theories both on curved backgrounds, manifestly preserving diffeomorphism invariance, and at finite temperature.


1993 ◽  
Vol 71 (5-6) ◽  
pp. 227-236 ◽  
Author(s):  
M. E. Carrington

There has been much recent interest in the finite-temperature effective potential of the standard model in the context of the electroweak phase transition. We review the calculation of the effective potential with particular emphasis on the validity of the expansions that are used. The presence of a term that is cubic in the Higgs condensate in the one-loop effective potential appears to indicate a first-order electroweak phase transition. However, in the high-temperature regime, the infrared singularities inherent in massless models produce cubic terms that are of the same order in the coupling. In this paper, we discuss the inclusion of an infinite set of these terms via the ring-diagram summation, and show that the standard model has a first-order phase transition in the weak coupling expansion.


1989 ◽  
Vol 04 (07) ◽  
pp. 633-644 ◽  
Author(s):  
I. L. BUCHBINDER ◽  
E. N. KIRILLOVA ◽  
S. D. ODINTSOV

The one-loop Vilkovisky effective potential which is not dependent on a gauge and a parametrization of quantum field, is investigated. We have considered Einstein gravity on a background manifold of (flat space) × (d−4- sphere) or × (d−4- dimensional torus ), d is even, and of R3 × (1- sphere ), where R3 is flat space. The numerical calculation for the cases R4 × Td−4 (d = 6,8,10) and R3 × S1 is done. The solution to the one-loop corrected equations of motion is found, although the spontaneous compactification is not stable in these cases.


2018 ◽  
Vol 33 (27) ◽  
pp. 1850157 ◽  
Author(s):  
Theodore N. Jacobson ◽  
Tonnis ter Veldhuis

We derive the one-loop effective action for scalar, pseudoscalar, and electromagnetic fields coupled to a Dirac fermion in an extension of QED with Yukawa couplings. Using the Schwinger proper-time formalism and zeta-function regularization, we calculate the full nonperturbative effective action to one loop in the constant background field approximation. Our result is nonperturbative in the external fields, and goes beyond existing results in the literature which treat only the first nontrivial order involving the pseudoscalar. The result has an even and odd part, which are related to the modulus and phase of the fermion functional determinant. The even contribution to the effective action involves the modulus of the effective Yukawa couplings and is invariant under global chiral transformations while the odd contribution is proportional to the angle between the scalar and pseudoscalar couplings. In different limits the effective action reduces either to the Euler–Heisenberg effective action or the Coleman–Weinberg potential. We also comment on the relationship between the odd part of the effective action and the chiral anomaly in QED.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Farhang Loran

Abstract We show that there exist scalar field theories with plausible one-particle states in general $D$-dimensional nonstationary curved spacetimes whose propagating modes are localized on $d\le D$ dimensional hypersurfaces, and the corresponding stress tensor resembles the bare cosmological constant $\lambda_{\rm B}$ in the $D$-dimensional bulk. We show that nontrivial $d=1$ dimensional solutions correspond to $\lambda_{\rm B}< 0$. Considering free scalar theories, we find that for $d=2$ the symmetry of the parameter space of classical solutions corresponding to $\lambda_{\rm B}\neq 0$ is $O(1,1)$, which enhances to $\mathbb{Z}_2\times{\rm Diff}(\mathbb{R}^1)$ at $\lambda_{\rm B}=0$. For $d>2$ we obtain $O(d-1,1)$, $O(d-1)\times {\rm Diff}(\mathbb{R}^1)$, and $O(d-1,1)\times O(d-2)\times {\rm Diff}(\mathbb{R}^1)$ corresponding to, respectively, $\lambda_{\rm B}<0$, $\lambda_{\rm B}=0$, and $\lambda_{\rm B}>0$.


2004 ◽  
Vol 19 (25) ◽  
pp. 4231-4249 ◽  
Author(s):  
A. A. BICHL ◽  
M. ERTL ◽  
A. GERHOLD ◽  
J. M. GRIMSTRUP ◽  
L. POPP ◽  
...  

The quantization of the noncommutative [Formula: see text], U(1) super-Yang–Mills action is performed in the superfield formalism. We calculate the one-loop corrections to the self-energy of the vector superfield. Although the power-counting theorem predicts quadratic ultraviolet and infrared divergences, there are actually only logarithmic UV and IR divergences, which is a crucial feature of noncommutative supersymmetric field theories.


1992 ◽  
Vol 07 (20) ◽  
pp. 5027-5044 ◽  
Author(s):  
G. MUSSARDO

The scaling region of the nonunitary minimal conformal model M3,5 is described by three different integrable massive field theories. We propose the scattering theory for the integrable deformation of M3,5 by the field ψ with anomalous dimensions [Formula: see text]. The spectrum of this theory is confirmed by the Truncation Conformal Space Approach. We also consider the thermodynamics of the one-dimensional quantum system defined by the transfer matrix relative to the deformation of M3,5 by the field φ with anomalous dimensions [Formula: see text]. This deformation drives the original conformal model into a region of the phase diagram where there are plasma oscillations.


1992 ◽  
Vol 07 (04) ◽  
pp. 777-794
Author(s):  
C. P. MARTIN

We analyze whether the so-called method of stochastic analytic regularization is suitable as an intermediate step for constructing perturbative renormalized quantum field theories. We choose a λϕ3 in six dimensions to prove that this regularization method does not in general provide a quantum field theory. This result seems to apply to any field theory with a quadratically UV-divergent stochastic two-point function, for instance λϕ4 and gauge theories in four dimensions.


2004 ◽  
Vol 19 (29) ◽  
pp. 2191-2204 ◽  
Author(s):  
YUE-LIANG WU

A new symmetry-preserving loop regularization method proposed in Ref. 1 is further investigated. It is found that its prescription can be understood by introducing a regulating distribution function to the proper-time formalism of irreducible loop integrals. The method simulates in many interesting features to the momentum cutoff, Pauli–Villars and dimensional regularization. The loop regularization method is also simple and general for the practical calculations to higher loop graphs and can be applied to both underlying and effective quantum field theories including gauge, chiral, supersymmetric and gravitational ones as the new method does not modify either the Lagrangian formalism or the spacetime dimension of original theory. The appearance of characteristic energy scale Mc and sliding energy scale μs offers a systematic way for studying the renormalization-group evolution of gauge theories in the spirit of Wilson–Kadanoff and for exploring important effects of higher dimensional interaction terms in the infrared regime.


Sign in / Sign up

Export Citation Format

Share Document