scholarly journals Accretion onto a quintessence contaminated rotating black hole: violating the lower limit for eta over s

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Ritabrata Biswas ◽  
Promila Biswas ◽  
Parthajit Roy

AbstractViscous accretion flow around a rotating supermassive black hole sitting in a quintessence tub is studied in this article. To introduce such a dark energy contaminated black hole’s gravitational force, a new pseudo-Newtonian potential is used. This pseudo-Newtonian force can be calculated if we know the distance from the black hole’s center, spin of the black hole and equation of state of the quintessence inside which the black hole is considered to lie. This force helps us to avoid complicated nonlinearity of general relativistic field equations. Transonic, viscous, continuous and Keplerian flow is assumed to take place. Fluid speed, sonic speed profile and specific angular momentum to Keplerian angular momentum ratio are found out for different values of spin parameter and quintessence parameter. Density variation is built and tallied with observations. Shear viscosity to entropy density ratio is constructed for our model and a comparison with theoretical lower limit is done.

Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


Author(s):  
Xian-Hui Ge ◽  
Sang-Jin Sin

Abstract We study charged black hole solutions in 4-dimensional (4D) Einstein–Gauss–Bonnet–Maxwell theory to the linearized perturbation level. We first compute the shear viscosity to entropy density ratio. We then demonstrate how bulk causal structure analysis imposes an upper bound on the Gauss–Bonnet coupling constant in the AdS space. Causality constrains the value of Gauss–Bonnet coupling constant $$\alpha _{GB}$$αGB to be bounded by $$\alpha _{GB}\le 0$$αGB≤0 as $$D\rightarrow 4$$D→4.


Angular momentum in axisymmetric space-times is investigated. The conclusions lead to a general definition suitable for all asymptoticallyflat spaces which is valid both at infinity and on the event horizon of a black hole. This first paper restricts attention to considerations at infinity. Working in terms of the spin coefficient formalism, the field equations are solved asymptotically at large distances and the definition is evaluated. A conservation law is derived and finally the effect on the angular momentum of a supertranslation of the coordinates is discussed.


Author(s):  
Abhrajit Bhattacharjee ◽  
Sandip Kumar Chakrabarti ◽  
Dipak Debnath

Abstract Spectral and timing properties of accretion flows on a black hole depend on their density and temperature distributions, which, in turn come from the underlying dynamics. Thus, an accurate description of the flow which includes hydrodynamics and radiative transfer is a must to interpret the observational results. In the case of non-rotating black holes, Pseudo- Newtonian description of surrounding space-time enables one to make a significant progress in predicting spectral and timing properties. This formalism is lacking for the spinning black holes. In this paper, we show that there exists an exact form of ‘natural’ potential derivable from the general relativistic (GR) radial momentum equation written in the local corotating frame. Use of this potential in an otherwise Newtonian set of equations, allows us to describe transonic flows very accurately as is evidenced by comparing with solutions obtained from the full GR framework. We study the properties of the sonic points and the centrifugal pressure supported shocks in the parameter space spanned by the specific energy and the angular momentum, and compare with the results of GR hydrodynamics. We show that this potential can safely be used for the entire range of Kerr parameter −1 < a < 1 for modeling of observational results around spinning black holes. We assume the flow to be inviscid. Thus, it is non-dissipative with constant energy and angular momentum. These assumptions are valid very close to the black hole horizon as the infall time scale is much shorter as compared to the viscous time scale.


2021 ◽  
Vol 0 (1) ◽  
pp. 87-91
Author(s):  
R.M. YUSUPOVA ◽  
◽  
R.N. ZMAILOV ◽  

The Taub-NUT space-time metric is one of the vacuum solutions to Einstein's gravitational field equations. In this metric, the Newman-Unti-Tamburino parameter (NUT) and its effect on the physical properties of a thin accretion disk are of particular interest. In this paper, calculations are performed to determine the physical properties of a thin accretion disk around the Taub-NUT black hole based on the Page-Thorne model. The influence of the NUT parameter on the angular velocity, binding energy, angular momentum of particles, effective potential, energy flow, and temperature of the accretion disk is revealed. According to the data obtained, the temperature of the accretion disk of the Taub-NUT black hole decreases as the value of the NUT parameter increases.


2014 ◽  
Vol 10 (S312) ◽  
pp. 135-136
Author(s):  
Farruh Atamurotov

AbstractThe shadow of a Kerr-like black hole has been considered and it was shown that in addition to the specific angular momentum a, deformation parameter of Kerr-like space-time essentially deforms the shape of the black hole shadow. For a given value of the black hole spin parameter a, the presence of a deformation parameter ε reduces the shadow and enlarges its deformation with respect to the one in the Kerr space-time.


2018 ◽  
Vol 33 (17) ◽  
pp. 1850099 ◽  
Author(s):  
X. G. Lan ◽  
J. Pu

In this paper, the shadow and the corresponding naked singularity cast by a Kerr–Sen black hole are studied. It is found that the shadow of a rotating black hole would be a dark zone surrounded by a deformed circle, and the shadow is distorted more away from a circle when the black hole approaches the extremal case. Besides, it is shown that the mean radius of the shadow decreases and distortion parameter increases with the increasing of charge, respectively. However, the mean radius and the distortion parameter vary complicatedly with the change of spin parameter. In the beginning, both observables decrease rapidly with the increasing of specific angular momentum, nevertheless, they increase slightly in the latter part. These results show that there would be a significant effect of the spin on the shadows, which would be of great importance for probing the nature of the black hole.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Markus Garbiso ◽  
Matthias Kaminski

Abstract We find hydrodynamic behavior in large simply spinning five-dimensional Anti-de Sitter black holes. These are dual to spinning quantum fluids through the AdS/CFT correspondence constructed from string theory. Due to the spatial anisotropy introduced by the angular momentum, hydrodynamic transport coefficients are split into groups longitudinal or transverse to the angular momentum, and aligned or anti-aligned with it. Analytic expressions are provided for the two shear viscosities, the longitudinal momentum diffusion coefficient, two speeds of sound, and two sound attenuation coefficients. Known relations between these coefficients are generalized to include dependence on angular momentum. The shear viscosity to entropy density ratio varies between zero and 1/(4π) depending on the direction of the shear. These results can be applied to heavy ion collisions, in which the most vortical fluid was reported recently. In passing, we show that large simply spinning five-dimensional Myers-Perry black holes are perturbatively stable for all angular momenta below extremality.


2017 ◽  
Vol 608 ◽  
pp. A60 ◽  
Author(s):  
M. Grould ◽  
F. H. Vincent ◽  
T. Paumard ◽  
G. Perrin

Context. The first observations of the GRAVITY instrument obtained in 2016, have shown that it should become possible to probe the spacetime close to the supermassive black hole Sagittarius A* (Sgr A*) at the Galactic center by using accurate astrometric positions of the S2 star. Aims. The goal of this paper is to investigate the detection by GRAVITY of different relativistic effects affecting the astrometric and/or spectroscopic observations of S2 such as the transverse Doppler shift, the gravitational redshift, the pericenter advance and higher-order general relativistic (GR) effects, in particular the Lense-Thirring effect due to the angular momentum of the black hole. Methods. We implement seven stellar-orbit models to simulate both astrometric and spectroscopic observations of S2 beginning near its next pericenter passage in 2018. Each model takes into account a certain number of relativistic effects. The most accurate one is a fully GR model and is used to generate the mock observations of the star. For each of the six other models, we determine the minimal observation times above which it fails to fit the observations, showing the effects that should be detected. These threshold times are obtained for different astrometric accuracies as well as for different spectroscopic errors. Results. Transverse Doppler shift and gravitational redshift can be detected within a few months by using S2 observations obtained with pairs of accuracies (σA,σV) = (10−100 μas, 1−10 km s-1) where σA and σV are the astrometric and spectroscopic accuracies, respectively. Gravitational lensing can be detected within a few years with (σA,σV) = (10 μas, 10 km s-1). Pericenter advance should be detected within a few years with (σA,σV) = (10 μas, 1−10 km s-1). Cumulative high-order photon curvature contributions, including the Shapiro time delay, affecting spectroscopic measurements can be observed within a few months with (σA,σV) = (10 μas, 1 km s-1). By using a stellar-orbit model neglecting relativistic effects on the photon path except the major contribution of gravitational lensing, S2 observations obtained with accuracies (σA,σV) = (10 μas, 10 km s-1), and a black hole angular momentum (a,i′,Ω′) = (0.99,45°,160°), the 1σ error on the spin parameter a is of about 0.4, 0.2, and 0.1 for a total observing run of 16, 30, and 47 yr, respectively. The 1σ errors on the direction of the angular momentum reach σi′ ≈ 25° and σΩ′ ≈ 40° when considering the three orbital periods run. We found that the uncertainties obtained with a less spinning black hole (a = 0.7) are similar to those evaluated with a = 0.99. Conclusions. The combination of S2 observations obtained with the GRAVITY instrument and the spectrograph SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) also installed at the VLT (Very Large Telescope) will lead to the detection of various relativistic effects. Such detections will be possible with S2 monitorings obtained within a few months or years, depending on the effect. Strong constraints on the angular momentum of Sgr A* (e.g., at 1σ = 0.1) with the S2 star will be possible with a simple stellar-orbit model without using a ray-tracing code but with approximating the gravitational lensing effect. However, long monitorings are necessary, and we thus must rely on the discovery of closer-in stars near Sgr A* if we want to efficiently constrain the black hole parameters with stellar orbits in a short time, or monitor the flares if they orbit around the black hole.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Neeraj Pant

We have presented a method of obtaining parametric classes of spherically symmetric analytic solutions of the general relativistic field equations in canonical coordinates. A number of previously known classes of solutions have been rediscovered which describe perfect fluid balls with infinite central pressure and infinite central density though their ratio is positively finite and less than one. From the solution of one of the newly discovered classes, we have constructed a causal model in which outmarch of pressure and density is positive and monotonically decreasing, and pressure-density ratio is positive and less than one throughout within the balls. Corresponding to this model, we have maximized the Neutron star mass 2.40MΘ with the linear dimensions of 28.43 kms and surface red shift of 0.4142.


Sign in / Sign up

Export Citation Format

Share Document