scholarly journals Stokesian dynamics simulations of a magnetotactic bacterium

2021 ◽  
Vol 44 (3) ◽  
Author(s):  
Sarah Mohammadinejad ◽  
Damien Faivre ◽  
Stefan Klumpp

AbstractThe swimming of bacteria provides insight into propulsion and steering under the conditions of low-Reynolds number hydrodynamics. Here we address the magnetically steered swimming of magnetotactic bacteria. We use Stokesian dynamics simulations to study the swimming of single-flagellated magnetotactic bacteria (MTB) in an external magnetic field. Our model MTB consists of a spherical cell body equipped with a magnetic dipole moment and a helical flagellum rotated by a rotary motor. The elasticity of the flagellum as well as magnetic and hydrodynamic interactions is taken into account in this model. We characterized how the swimming velocity is dependent on parameters of the model. We then studied the U-turn motion after a field reversal and found two regimes for weak and strong fields and, correspondingly, two characteristic time scales. In the two regimes, the U-turn time is dominated by the turning of the cell body and its magnetic moment or the turning of the flagellum, respectively. In the regime for weak fields, where turning is dominated by the magnetic relaxation, the U-turn time is approximately in agreement with a theoretical model based on torque balance. In the strong-field regime, strong deformations of the flagellum are observed. We further simulated the swimming of a bacterium with a magnetic moment that is inclined relative to the flagellar axis. This scenario leads to intriguing double helical trajectories that we characterize as functions of the magnetic moment inclination and the magnetic field. For small inclination angles ($$\lesssim {20^{\circ }}$$≲20∘) and typical field strengths, the inclination of the magnetic moment has only a minor effect on the swimming of MTB in an external magnetic field. Large inclination angles result in a strong reduction in the velocity in direction of the magnetic field, consistent with recent observations that bacteria with large inclination angles use a different propulsion mechanism.Graphic abstract

2015 ◽  
Vol 764 ◽  
pp. 316-348 ◽  
Author(s):  
Habibur Rahman ◽  
Sergey A. Suslov

AbstractLinear stability of magnetoconvection of a ferromagnetic fluid contained between two infinite differentially heated non-magnetic plates in the presence of an oblique uniform external magnetic field is studied in zero gravity conditions. The thermomagnetic convection that arises is caused by the spatial variation of magnetisation occurring due to its dependence on the temperature. The critical values of the governing parameters at which the transition between motionless and convective states is observed are determined for various field inclination angles and for fluid magnetic parameters that are consistently chosen from a realistic experimental range. It is shown that, similar to natural paramagnetic fluids, the most prominent convection patterns align with the in-layer component of the applied magnetic field but in contrast to such paramagnetic fluids the instability patterns detected in ferrofluids can be oscillatory. It is also found that, contrary to paramagnetic fluids, the stability characteristics of magnetoconvection in ferrofluids depend on the magnitude of the applied field which becomes an additional parameter of the problem. This is shown to be due to the nonlinearity of the magnetic field distribution within the ferrofluid.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 146
Author(s):  
Alessandro Coretti ◽  
Lamberto Rondoni ◽  
Sara Bonella

We illustrate how, contrary to common belief, transient Fluctuation Relations (FRs) for systems in constant external magnetic field hold without the inversion of the field. Building on previous work providing generalized time-reversal symmetries for systems in parallel external magnetic and electric fields, we observe that the standard proof of these important nonequilibrium properties can be fully reinstated in the presence of net dissipation. This generalizes recent results for the FRs in orthogonal fields—an interesting but less commonly investigated geometry—and enables direct comparison with existing literature. We also present for the first time a numerical demonstration of the validity of the transient FRs with nonzero magnetic field via nonequilibrium molecular dynamics simulations of a realistic model of liquid NaCl.


2011 ◽  
Vol 228-229 ◽  
pp. 1007-1011
Author(s):  
Wei Wei Zhang ◽  
Long Qiu Li ◽  
Guang Yu Zhang ◽  
Hui Juan Dong

The effect of an external magnetic field on the hydration behavior of nanoscopic n-octane plates has been extensively investigated using molecular dynamics simulation in an isothermal-isobaric ensemble. The solute plates with different intermolecular spacing have also been considered to examine the effect of the topology of hydrophobic plates on the adsorption behavior of confined water in the presence of an external magnetic field with an intensity ranging from 0.1T to 1 T. The results demonstrate that magnetic exposure decreases the density of water for the plates with intermolecular spacing of a0 = 4 and 5 Å. This suggests that the free energy barrier for evaporation can be lowered by the applied field, and the hydrophobic solutes consisting of condensed n-octane molecules are apt to aggregate in the aqueous solution. In contrast, the magnetic field improves the dissolution or wetting of solutes comprised of loosely packed n-octane plates of a0=7Å. A magnetic-field-induced adsorption-to-desorption translation, which is in agreement with the experimental results provided by Ozeki, has also been observed for the plates with intermolecular spacing of a0 = 6 Å.


2014 ◽  
Vol 23 (01n02) ◽  
pp. 1450008
Author(s):  
Isaac Macwan ◽  
Zihe Zhao ◽  
Omar Sobh ◽  
Jinnque Rho ◽  
Ausif Mahmood ◽  
...  

Magnetotactic bacteria (MTB), discovered in early 1970s contain single-domain crystals of magnetite ( Fe 3 O 4) called magnetosomes that tend to form a chain like structure from the proximal to the distal pole along the long axis of the cell. The ability of these bacteria to sense the magnetic field for displacement, also called magnetotaxis, arises from the magnetic dipole moment of this chain of magnetosomes. In aquatic habitats, these organisms sense the geomagnetic field and traverse the oxic-anoxic interface for optimal oxygen concentration along the field lines. Here we report an elegant use of MTB where magnetotaxis of Magnetospirillum magneticum (classified as AMB-1) could be utilized for controlled navigation over a semiconductor substrate for selective deposition. We examined 50mm long coils made out of 18AWG and 20AWG copper conductors having diameters of 5mm, 10mm and 20mm for magnetic field intensity and heat generation. Based on the COMSOL simulations and experimental data, it is recognized that a compound semiconductor manufacturing technology involving bacterial carriers and carbon-based materials such as graphene and carbon nanotubes would be a desirable choice in the future.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850011
Author(s):  
Zeinab Rezaei

In this work, we calculate the neutron anomalous magnetic moment (AMM) supposing that this value can depend on the density and magnetic field of the system. We employ the lowest-order constraint variation (LOCV) method and [Formula: see text] nuclear potential to calculate the medium dependency of the neutron AMM. It is confirmed that the neutron AMM increases by increasing the density, while it decreases as the magnetic field grows. The energy and equation of state for the system have also been investigated.


1978 ◽  
Vol 33 (7) ◽  
pp. 749-760 ◽  
Author(s):  
G. E. J. Eggermont ◽  
P. W. Hermans ◽  
L. J. F. Hermans ◽  
H. F. P. Knaap ◽  
J. J. M. Beenakker

In a rarefied polyatomic gas streaming through a rectangular channel, an external magnetic field produces a heat flux perpendicular to the flow direction. Experiments on this “viscom agnetic heat flux” have been performed for CO, N2, CH4 and HD at room temperature, with different orientations of the magnetic field. Such measurements enable one to separate the boundary layer contribution from the purely bulk contribution by means of the theory recently developed by Vestner. Very good agreement is found between the experimentally determined bulk contribution and the theoretical Burnett value for CO, N2 and CH4 , yet the behavior of HD is found to be anomalous.


2021 ◽  
pp. 2150413
Author(s):  
Hamdy I. Abdel-Gawad

The ferromagnetism induced by an external magnetic field (EMF), in (3+1) dimensions, is governed by Kraenkel–Manna–Merle system (KMMS). A (1+1) dimension model equation was derived in the literature. The magnetic moments are parallel to the magnetic field in ferromagnetism as they are aligning in the same direction of the external field. Here, it is shown that the KMMS supports the presence of internal magnetic field. This may be argued to medium characteristics. The objective of this work is to mind multiple soliton solutions, which are obtained via the generalized together with extended unified methods. Graphical representation of the results are carried. They describe infinite soliton shapes, which arise from the multiple variation of the arbitrary functions in the solutions. It is, also, shown that internal magnetic field decays, asymptotically, to zero with time.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Cong Wang ◽  
Jungyul Park

AbstractIn this paper, we report a thin magnetic micropump embedded in contact lens, which is capable of on-demand one-directional drug delivery. The proposed micropump can be actuated by the external magnetic field whenever needed without the need of battery. A micro check valve was integrated with the micropump for one-directional drug delivery from the micropump to the post-lens tear film. With actuation of the external magnetic field, the micro check valve is opened, and on-demand drug release can be realized. On the contrary, without an external magnetic field, the micro check valve is closed, and the undesired drug diffusion can be prevented. Through the control of the strength and the frequency of the magnetic field pulse, on-demand drug release and controlled dose can be realized.


1983 ◽  
Vol 29 (1) ◽  
pp. 131-137 ◽  
Author(s):  
M. H. A. Hassan ◽  
P. H. Sakanaka

The energy loss rate, Ė, of test ions injected with velocity V into a Maxwellian electron-ion plasma in the presence of an external magnetic field, is studied. Most of the integrals appearing in the expression for Ė are evaluated analytically and the remaining integrals are evaluated numerically for various values of the parameters η = Ωe / ωe, x = V/ve, r = Te/Ti, and the angle of injection θ. It is shown that the effect of the magnetic field is rather small except for η > 1, the temperature ratio is important for small x (x ≤ 0·2), and the injection angle is not important.


2016 ◽  
Vol 82 (13) ◽  
pp. 3886-3891 ◽  
Author(s):  
Masayoshi Tanaka ◽  
William Knowles ◽  
Rosemary Brown ◽  
Nicole Hondow ◽  
Atsushi Arakaki ◽  
...  

ABSTRACTUsing microorganisms to remove waste and/or neutralize pollutants from contaminated water is attracting much attention due to the environmentally friendly nature of this methodology. However, cell recovery remains a bottleneck and a considerable challenge for the development of this process. Magnetotactic bacteria are a unique group of organisms that can be manipulated by an external magnetic field due to the presence of biogenic magnetite crystals formed within their cells. In this study, we demonstrated an account of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria alongside and independent of magnetite crystal biomineralization when grown in a medium containing selenium oxyanion (SeO32−). Quantitative analysis shows that magnetotactic bacteria accumulate the largest amount of target molecules (Se) per cell compared with any other previously reported nonferrous metal/metalloid. For example, 2.4 and 174 times more Se is accumulated than Te taken up into cells and Cd2+adsorbed onto the cell surface, respectively. Crucially, the bacteria with high levels of Se accumulation were successfully recovered with an external magnetic field. The biomagnetic recovery and the effective accumulation of target elements demonstrate the potential for application in bioremediation of polluted water.IMPORTANCEThe development of a technique for effective environmental water remediation is urgently required across the globe. A biological remediation process of waste removal and/or neutralization of pollutant from contaminated water using microorganisms has great potential, but cell recovery remains a bottleneck. Magnetotactic bacteria synthesize magnetic particles within their cells, which can be recovered by a magnetic field. Herein, we report an example of accumulation and precipitation of amorphous elemental selenium nanoparticles within magnetotactic bacteria independent of magnetic particle synthesis. The cells were able to accumulate the largest amount of Se compared to other foreign elements. More importantly, the Se-accumulating bacteria were successfully recovered with an external magnetic field. We believe magnetotactic bacteria confer unique advantages of biomagnetic cell recovery and of Se accumulation, providing a new and effective methodology for bioremediation of polluted water.


Sign in / Sign up

Export Citation Format

Share Document