Structure preserving algorithms for mathematical model of auto-catalytic glycolysis chemical reaction and numerical simulations

Author(s):  
Nauman Ahmed ◽  
Muhammad Rafiq ◽  
Dumitru Baleanu ◽  
Muhammad Aziz-ur Rehman ◽  
Ilyas Khan ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


2013 ◽  
Vol 760-762 ◽  
pp. 2263-2266
Author(s):  
Kang Yong ◽  
Wei Chen

Beside the residual stresses and axial loads, other factors of pipe like ovality, moment could also bring a significant influence on pipe deformation under external pressure. The Standard of API-5C3 has discussed the influences of deformation caused by yield strength of pipe, pipe diameter and pipe thickness, but the factor of ovality degree is not included. Experiments and numerical simulations show that with the increasing of pipe ovality degree, the anti-deformation capability under external pressure will become lower, and ovality affecting the stability of pipe shape under external pressure is significant. So it could be a path to find out the mechanics relationship between ovality and pipe deformation under external pressure by the methods of numerical simulations and theoretical analysis.


Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.


2021 ◽  
Vol 1 (2) ◽  
pp. 12-20
Author(s):  
Najmeh Keshtkar ◽  
Johannes Mersch ◽  
Konrad Katzer ◽  
Felix Lohse ◽  
Lars Natkowski ◽  
...  

This paper presents the identification of thermal and mechanical parameters of shape memory alloys by using the heat transfer equation and a constitutive model. The identified parameters are then used to describe the mathematical model of a fiber-elastomer composite embedded with shape memory alloys. To verify the validity of the obtained equations, numerical simulations of the SMA temperature and composite bending are carried out and compared with the experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yudi Ari Adi ◽  
Fajar Adi-Kusumo ◽  
Lina Aryati ◽  
Mardiah S. Hardianti

Acute myeloid leukemia (AML) is a malignant hematopoietic disorder characterized by uncontrolled proliferation of immature myeloid cells. In the AML cases, the phosphoinositide 3-kinases (PI3K)/AKT signaling pathways are frequently activated and strongly contribute to proliferation and survival of these cells. In this paper, a mathematical model of the PI3K/AKT signaling pathways in AML is constructed to study the dynamics of the proteins in these pathways. The model is a 5-dimensional system of the first-order ODE which describes the interaction of the proteins in AML. The interactions between those components are assumed to follow biochemical reactions, which are modelled by Hill’s equation. From the numerical simulations, there are three potential components targets in PI3K/AKT pathways to therapy in the treatment of AML patient.


2020 ◽  
Vol 34 ◽  
pp. 02002
Author(s):  
Aurelia Florea ◽  
Cristian Lăzureanu

In this paper we consider a three-dimensional nonlinear system which models the dynamics of a population during an epidemic disease. The considered model is a SIS-type system in which a recovered individual automatically becomes a susceptible one. We take into account the births and deaths, and we also consider that susceptible individuals are divided into two groups: non-vaccinated and vaccinated. In addition, we assume a medical scenario in which vaccinated people take a special measure to quarantine their newborns. We study the stability of the considered system. Numerical simulations point out the behavior of the considered population.


Author(s):  
Liming Cai ◽  
Peixia Yue ◽  
Mini Ghosh ◽  
Xuezhi Li

Schistosomiasis is a snail-borne parasitic disease, which is affecting almost 240 million people worldwide. The number of humans affected by schistosomiasis is continuously increasing with the rise in the use of agrochemicals. In this paper, a mathematical model is formulated and analyzed to assess the effect of agrochemicals on the transmission of schistosomiasis. The proposed model incorporates the effects of fertilizers, herbicides and insecticides on susceptible snails and snail predators along with schistosomiasis disease transmission. The existence and stability of the equilibria in the model are discussed. Sensitivity analysis is performed to identify the key parameters of the proposed model, which contributes most in the transmission of this disease. Numerical simulations are also performed to assess the impact of fertilizers, herbicides and insecticides on schistosomiasis outbreaks. Our study reveals that the agricultural pollution can enhance the transmission intensity of schistosomiasis, and in order to prevent the outbreak of schistosomiasis, the use of pesticides should be controlled.


Sign in / Sign up

Export Citation Format

Share Document