scholarly journals Gold/diamond nanohybrids for quantum sensing applications

2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Pei-Chang Tsai ◽  
Oliver Y Chen ◽  
Yan-Kai Tzeng ◽  
Yuen Yung Hui ◽  
Jiun You Guo ◽  
...  
2020 ◽  
Vol 6 (11) ◽  
pp. eaaz8065 ◽  
Author(s):  
Mirco Kutas ◽  
Björn Haase ◽  
Patricia Bickert ◽  
Felix Riexinger ◽  
Daniel Molter ◽  
...  

Quantum sensing is highly attractive for accessing spectral regions in which the detection of photons is technically challenging: Sample information is gained in the spectral region of interest and transferred via biphoton correlations into another spectral range, for which highly sensitive detectors are available. This is especially beneficial for terahertz radiation, where no semiconductor detectors are available and coherent detection schemes or cryogenically cooled bolometers have to be used. Here, we report on the first demonstration of quantum sensing in the terahertz frequency range in which the terahertz photons interact with a sample in free space and information about the sample thickness is obtained by the detection of visible photons. As a first demonstration, we show layer thickness measurements with terahertz photons based on biphoton interference. As nondestructive layer thickness measurements are of high industrial relevance, our experiments might be seen as a first step toward industrial quantum sensing applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Cillian Harney ◽  
Stefano Pirandola

AbstractThe characterisation of Quantum Channel Discrimination (QCD) offers critical insight for future quantum technologies in quantum metrology, sensing and communications. The task of multi-channel discrimination creates a scenario in which the discrimination of multiple quantum channels can be equated to the idea of pattern recognition, highly relevant to the tasks of quantum reading, illumination and more. Although the optimal quantum strategy for many scenarios is an entangled idler-assisted protocol, the extension to a multi-hypothesis setting invites the exploration of discrimination strategies based on unassisted, multipartite probe states. In this work, we expand the space of possible quantum-enhanced protocols by formulating general classes of unassisted multi-channel discrimination protocols which are not assisted by idler modes. Developing a general framework for idler-free protocols, we perform an explicit investigation in the bosonic setting, studying prominent Gaussian channel discrimination problems for real-world applications. Our findings uncover the existence of strongly quantum advantageous, idler-free protocols for the discrimination of bosonic loss and environmental noise. This circumvents the necessity for idler assistance to achieve quantum advantage in some of the most relevant discrimination settings, significantly loosening practical requirements for prominent quantum-sensing applications.


2018 ◽  
Vol 51 (33) ◽  
pp. 333002 ◽  
Author(s):  
Takeshi Ohshima ◽  
Takahiro Satoh ◽  
Hannes Kraus ◽  
Georgy V Astakhov ◽  
Vladimir Dyakonov ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
H. Morishita ◽  
T. Tashima ◽  
D. Mima ◽  
H. Kato ◽  
T. Makino ◽  
...  

Abstract Nitrogen-vacancy (NV) centres in diamond hold promise in quantum sensing applications. A major interest in them is an enhancement of their sensitivity by the extension of the coherence time (T2). In this report, we experimentally generated more than four dressed states in a single NV centre in diamond based on Autler-Townes splitting (ATS). We also observed the extension of the coherence time to T2 ~ 1.5 ms which is more than two orders of magnitude longer than that of the undressed states. As an example of a quantum application using these results we propose a protocol of quantum sensing, which shows more than an order of magnitude enhancement in the sensitivity.


2015 ◽  
Vol 821-823 ◽  
pp. 355-358
Author(s):  
Vladimir Dyakonov ◽  
Hannes Kraus ◽  
V.A. Soltamov ◽  
Franziska Fuchs ◽  
Dmitrij Simin ◽  
...  

Atomic-scale defects in silicon carbide exhibit very attractive quantum properties that can be exploited to provide outstanding performance in various sensing applications. Here we provide the results of our studies of the spin-optical properties of the vacancy related defects in SiC. Our studies show that several spin-3/2 defects in silicon carbide crystal are characterized by nearly temperature independent axial crystal fields, which makes these defects very attractive for vector magnetometry. The zero-field splitting of another defect exhibits on contrast a giant thermal shift of 1.1 MHz/K at room temperature, and can be used for temperature sensing applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ziwei Qiu ◽  
Uri Vool ◽  
Assaf Hamo ◽  
Amir Yacoby

AbstractQuantum sensing exploits the strong sensitivity of quantum systems to measure small external signals. The nitrogen-vacancy (NV) center in diamond is one of the most promising platforms for real-world quantum sensing applications, predominantly used as a magnetometer. However, its magnetic field sensitivity vanishes when a bias magnetic field acts perpendicular to the NV axis. Here, we introduce a different sensing strategy assisted by the nitrogen nuclear spin that uses the entanglement between the electron and nuclear spins to restore the magnetic field sensitivity. This, in turn, allows us to detect small changes in the magnetic field angle relative to the NV axis. Furthermore, based on the same underlying principle, we show that the NV coupling strength to magnetic noise, and hence its coherence time, exhibits a strong asymmetric angle dependence. This allows us to uncover the directional properties of the local magnetic environment and to realize maximal decoupling from anisotropic noise.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


Sign in / Sign up

Export Citation Format

Share Document