The Generation of Pancreatic Beta Cells from Stem Cells: Intra- and Extrapancreatic Sources

2007 ◽  
pp. 139-163
Author(s):  
Mairi Brittan ◽  
Naomi J. Guppy ◽  
Tariq G. Fellous ◽  
Malcolm R. Alison
2010 ◽  
Vol 46 (0) ◽  
Author(s):  
Maria Gertrude C Derikito ◽  
Maria Wartenberg ◽  
Heinrich Sauer ◽  
Cynthia P Saloma ◽  
Ameurfina D Santos

2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Balboa ◽  
Diepiriye G. Iworima ◽  
Timothy J. Kieffer

Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245204
Author(s):  
Shigeharu G. Yabe ◽  
Satsuki Fukuda ◽  
Junko Nishida ◽  
Fujie Takeda ◽  
Kiyoko Nashiro ◽  
...  

Diabetes mellitus is caused by breakdown of blood glucose homeostasis, which is maintained by an exquisite balance between insulin and glucagon produced respectively by pancreatic beta cells and alpha cells. However, little is known about the mechanism of inducing glucagon secretion from human alpha cells. Many methods for generating pancreatic beta cells from human pluripotent stem cells (hPSCs) have been reported, but only two papers have reported generation of pancreatic alpha cells from hPSCs. Because NKX6.1 has been suggested as a very important gene for determining cell fate between pancreatic beta and alpha cells, we searched for the factors affecting expression of NKX6.1 in our beta cell differentiation protocols. We found that BMP antagonism and activation of retinoic acid signaling at stage 2 (from definitive endoderm to primitive gut tube) effectively suppressed NKX6.1 expression at later stages. Using two different hPSCs lines, treatment with BMP signaling inhibitor (LDN193189) and retinoic acid agonist (EC23) at Stage 2 reduced NKX6.1 expression and allowed differentiation of almost all cells into pancreatic alpha cells in vivo after transplantation under a kidney capsule. Our study demonstrated that the cell fate of pancreatic cells can be controlled by adjusting the expression level of NKX6.1 with proper timing of BMP antagonism and activation of retinoic acid signaling during the pancreatic differentiation process. Our method is useful for efficient induction of pancreatic alpha cells from hPSCs.


2021 ◽  
Author(s):  
Tianqin Xie ◽  
Qiming Huang ◽  
Qiulang Huang ◽  
Haixia Zeng ◽  
Jianping Liu

Abstract ObjectiveIn recent years, cell therapy has become a new research direction in the treatment of diabetes. However, the underlying molecular mechanisms of mesenchymal stem cells (MSCs) participate in such treatment has not been clarified. MethodsIn this study, human umbilical cord mesenchymal stem cells (HUC-MSCs) isolated from newborns were progressively induced into insulin-producing cells (IPCs) using small molecules. HUC-MSCs (S0) and four induced stage (S1-S4) samples were prepared. We then performed transcriptome sequencing experiments to obtain the dynamic expression profiles of both mRNAs and long noncoding RNAs (lncRNAs). ResultsWe found that the number of differentially expressed lncRNAs and mRNAs showed a decreasing trend during differentiation. Gene Ontology (GO) analysis showed that the target genes of differentially expressed lncRNAs were associated with translation, cell adhesion, and cell connection. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the NF-KB signaling pathway, MAPK signaling pathway, HIPPO signaling pathway, PI3K-Akt signaling pathway, and p53 signaling pathway were enriched in these differentially expressed lncRNA-targeting genes. We also found that the coexpression of the lncRNA: CTBP1-AS2 with the PROX1, and the lncRNAs AC009014.3 and GS1-72M22.1 with the mRNA JARID2 was related to the development of pancreatic beta cells. Moreover, the coexpression of the lncRNAs :XLOC_ 050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14- AS1, RP11-148K1.12, and CTD2020K17.3 with p53, regulated insulin secretion by pancreatic beta cells.ConclusionThis research revealed that HUC-MSCs combined with small molecule compounds were successfully induced into IPCs. Differentially expressed lncRNAs may regulate the insulin secretion of pancreatic beta cells by regulating multiple signaling pathways. The lncRNAs: AC009014.3,Gs1-72m21.1 and CTBP1-AS2 may be involved in the development of pancreatic beta cells, and the lncRNAs: XLOC_050969, LINC00883, XLOC_050981, XLOC_050925, MAP3K14-AS1, RP11-148K1.12, and CTD2020K17.3 may be involved in regulating the insulin secretion of pancreatic beta cells, thus providing a lncRNA catalog for future research regarding the mechanism of the transdifferentiation of HUC-MSCs into IPCs. It also provides a new theoretical basis for the transplantation of insulin-producing cells into diabetic patients in the future.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Nimshitha Pavathuparambil Abdul Manaph ◽  
Kisha N. Sivanathan ◽  
Jodie Nitschke ◽  
Xin-Fu Zhou ◽  
Patrick T. Coates ◽  
...  

Abstract The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients’ own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating “beta cell-like cells” as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.


Author(s):  
Chunyu Bai ◽  
Qiwei Ren ◽  
Haifeng Liu ◽  
Xiangchen Li ◽  
Weijun Guan ◽  
...  

Pancreatic beta cell transplantation is the ideal method for treatment of type 1 diabetes mellitus (T1DM), and the generation of beta cells from induced pluripotent stem cells (iPSCs) of patients is a promising strategy. In this study, we improved a previous strategy to produce beta cells using extracellular vesicles (EVs) derived from mature beta cells and differentiated beta cells from iPSCs (i-Beta cells), which secreted insulin under glucose stimulation in vitro and ameliorated hyperglycemia in vivo. Mechanistic analyses revealed that EV-carried microRNA (miR)-212/132 (EV-miR-212/132) directly bound to the 3′ UTR of FBW7 to prevent its translation and FBW7 combined with NGN3 to accelerate its proteasomal degradation. EV-miR-212/132 stabilized NGN3 expression to promote differentiation of endocrine cells from induced iPSCs. Moreover, NGN3 bound to PDX1 to enhance transcription of endogenous miR-212/132 and formed a positive regulatory circuit that maintained the functions of mature pancreatic beta cells.ConclusionThis study describes a novel approach for beta cell production and supports the use of iPSCs for cell replacement therapy of T1DM.


Sign in / Sign up

Export Citation Format

Share Document