IN VIVO BONE INGROWTH IN RAT MARROW CELL IMPLANTED MACROPOROUS CALCIUM METAPHOSPHATE MATRIX

Bioceramics ◽  
1999 ◽  
Author(s):  
Yong-Moo Lee ◽  
Yuntak Lim ◽  
Sukyoung Kim ◽  
Young Ku ◽  
Chong-Pyoung Chung
Keyword(s):  
Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
1993 ◽  
Vol 82 (1) ◽  
pp. 318-325 ◽  
Author(s):  
NJ Parks ◽  
TG Kawakami ◽  
MJ Avila ◽  
R White ◽  
GR Cain ◽  
...  

beta-emitting 166Ho (t1/2 = 26.78 hours, E(beta)max = 1.8 MeV) complexed with the phosphonic acid chelator, 1,4,7,10 tetraazacyclododecane-1,4,7,10-tetra(methylene phosphonic acid) (DOTMP) at a ligand-to-metal ratio of 1.5:1 binds to bone. This radioactive complex is a marrow-ablating radiopharmaceutical that appears useful for preparation of bone marrow (BM) transplant recipients without the morbidity usually associated with total body irradiation preparatory regimens. We have found with seven splenectomized young adult beagle dogs that a 166Ho radiopharmaceutical dosage of 370 MBq/kg body weight provides an initial skeletal radioactivity burden of at least 1.5 GBq/kg skeleton and results in complete ablation of hematopoietic marrow cell populations within 7 days. The beta particle flux distribution in BM-forming skeletal tissue is not uniform. Red marrow radiation doses varied from 30 to 115 Gy as estimated by direct radioassay and autoradiographic analyses of both bone biopsies and postmortem samples; the median value of 61 Gy agreed with our theoretical expectations. In vivo radioactivity distribution was evaluated with nuclear imaging methods. Apparently, normal hematopoiesis was restored in three dogs with autologous BM transplants performed 5 to 6 days after administration of the marrow ablative radiopharmaceutical, 166Ho-DOTMP. BM biopsies at 7 to 10 months posttransplantation indicate continued normal hematopoietic activity.


Author(s):  
Gan Huang ◽  
Shu-Ting Pan ◽  
Jia-Xuan Qiu

Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, low elastic modulus and high friction coefficient of porous Ta can effectively avoid stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta based implants or prostheses are mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta based implants or prostheses have shown their clinical value in the treatment of individual patient who need specially designed implant or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.


Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4275-4287 ◽  
Author(s):  
R Rajapaksa ◽  
N Ginzton ◽  
LS Rott ◽  
PL Greenberg

Abstract Ineffective hematopoiesis with associated cytopenias and potential evolution to acute myeloid leukemia (AML) characterize patients with myelodysplastic syndrome (MDS). We evaluated levels of apoptosis and of apoptosis-related oncoproteins (c-Myc, which enhances, and Bcl-2, which diminishes apoptosis) expressed within CD34+ and CD34- marrow cell populations of MDS patients (n = 24) to determine their potential roles in the abnormal hematopoiesis of this disorder. Marrow cells were permeabilized and CD34+ and CD34- cells were separately analyzed by FACS to detect: (1) a subdiploid (sub-G1) DNA population, and (2) expression of Bcl-2 and c-Myc oncoproteins. Within the CD34+ subset, a significantly increased percentage of cells demonstrated apoptotic/sub- G1 DNA content in early (ie. refractory anemia) MDS patients compared with normal individuals and AML patients (mean values: 9.1% > 2.1% > 1.2%). Correlated with these findings, the ratio of expression of c-Myc to Bcl-2 oncoproteins among CD34+ cells was significantly increased for MDS patients compared to those from normal and AML individuals (mean values: 1.6 > 1.2 > 0.9). Bcl-2 and c-Myc oncoprotein levels were maturation stage-dependent, with high levels expressed within CD34+ marrow cells, decreasing markedly with myeloid maturation. Treatment of seven MDS patients with the cytokines granulocyte colony-stimulating factor plus erythropoietin was associated with decreased levels of apoptosis within CD34+ marrow cells and may contribute to the enhanced hematopoiesis in vivo that was shown. These findings are consistent with the hypothesis that altered balance between cell-death (eg, c-Myc) and cell-survival (eg, Bcl-2) programs were associated with the increased degrees of apoptosis present in MDS hematopoietic precursors and may contribute to the ineffective hematopoiesis in this disorder, in contrast to decreased apoptosis and enhanced leukemic cell survival in AML.


2020 ◽  
Vol 4 (24) ◽  
pp. 6189-6198
Author(s):  
Ellen Fraint ◽  
María Feliz Norberto ◽  
Teresa V. Bowman

Abstract Transplantation is the most common assay for measuring the in vivo functionality of hematopoietic stem cells (HSCs). Although various HSC transplantation strategies have been developed in zebrafish, they are underutilized because of challenges related to immune matching and preconditioning toxicity. To circumvent these limitations, we developed a simple and robust transplantation model using HSC-deficient hosts. Homozygous runx1W84X mutants are devoid of definitive hematopoietic cells, including HSCs and adaptive immune cells; thus, they require no preconditioning regimen for transplantation. Marrow cell transplantation into runx1-mutant zebrafish 2 days after fertilization significantly improved their survival to adulthood and resulted in robust, multilineage, long-lasting, serially repopulating engraftment. Furthermore, we demonstrated that engraftment into runx1 homozygous mutants was significantly higher than into runx1 heterozygotes, demonstrating that the improved transplantation success is attributable to the empty HSC niche in mutants and not just the embryonic environment. Competitive transplantation of marrow cells into runx1 mutants revealed a stem cell frequency similar to that of murine marrow cells, which demonstrates the utility of this model for quantifying HSC function. The streamlined approach and robustness of this assay will help broaden its feasibility for future high-throughput transplantation experiments in zebrafish and will enable further novel discoveries in the biology of HSCs.


Blood ◽  
1975 ◽  
Vol 45 (3) ◽  
pp. 427-433 ◽  
Author(s):  
DH Chui ◽  
BV Loyer

Abstract Adult SI/SI-d mutant mice have severe macrocytic, normochromic anemia. Moreover these animals are unresponsive to the stimulation of erythropoietin in vivo. By means of a bone marrow cell suspension culture system, the present investigation shows that in adult SI/SI-d marrow, there are cells capable of responding in vitro to erythropoietin in a normal fashion. Moreover, the erythropoietin present in SI/SI-d serum is biologically active in vitro without any prior biochemical modification. These observations support the suggestion that there is a defect in differentiation in the erythroid cell lines of SI/SI-d mice in vivo due to an abnormal hemopoietic microenvironment.


2002 ◽  
Vol 20 (6) ◽  
pp. 1164-1169 ◽  
Author(s):  
Stuart Goodman ◽  
Ting Ma ◽  
Michael Trindade ◽  
Takashi Ikenoue ◽  
Ippe Matsuura ◽  
...  
Keyword(s):  
Cox 2 ◽  

Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420 ◽  
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Abstract Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


2019 ◽  
Vol 76 ◽  
pp. 513-521 ◽  
Author(s):  
Shan Gao ◽  
Yang Lv ◽  
Liang Yuan ◽  
Huihui Ren ◽  
Teng Wu ◽  
...  

2007 ◽  
Vol 330-332 ◽  
pp. 967-970 ◽  
Author(s):  
B. Otsuki ◽  
Mitsuru Takemoto ◽  
Shunsuke Fujibayashi ◽  
Masashi Neo ◽  
Tadashi Kokubo ◽  
...  

A porous structure comprises pores and pore throats with a complex three-dimensional network structure, and many investigators have described the relationship between average pore size and the amount of bone ingrowth. However, the influence of network structure or pore throats for tissue ingrowth has rarely been discussed. Bioactive porous titanium implants with 48% porosity were analyzed using specific algorithms for three-dimensional analysis of interconnectivity based on a micro focus X-ray computed tomography system. In vivo histological analysis was performed using the very same implants implanted into the femoral condyles of male rabbits for 6 weeks. This matching study revealed that more poorly differentiated pores tended to have narrow pore throats, especially in their shorter routes to the outside. Data obtained suggest that this sort of novel analysis is useful for evaluating bone and tissue ingrowth into porous biomaterials.


Sign in / Sign up

Export Citation Format

Share Document