scholarly journals Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4275-4287 ◽  
Author(s):  
R Rajapaksa ◽  
N Ginzton ◽  
LS Rott ◽  
PL Greenberg

Abstract Ineffective hematopoiesis with associated cytopenias and potential evolution to acute myeloid leukemia (AML) characterize patients with myelodysplastic syndrome (MDS). We evaluated levels of apoptosis and of apoptosis-related oncoproteins (c-Myc, which enhances, and Bcl-2, which diminishes apoptosis) expressed within CD34+ and CD34- marrow cell populations of MDS patients (n = 24) to determine their potential roles in the abnormal hematopoiesis of this disorder. Marrow cells were permeabilized and CD34+ and CD34- cells were separately analyzed by FACS to detect: (1) a subdiploid (sub-G1) DNA population, and (2) expression of Bcl-2 and c-Myc oncoproteins. Within the CD34+ subset, a significantly increased percentage of cells demonstrated apoptotic/sub- G1 DNA content in early (ie. refractory anemia) MDS patients compared with normal individuals and AML patients (mean values: 9.1% > 2.1% > 1.2%). Correlated with these findings, the ratio of expression of c-Myc to Bcl-2 oncoproteins among CD34+ cells was significantly increased for MDS patients compared to those from normal and AML individuals (mean values: 1.6 > 1.2 > 0.9). Bcl-2 and c-Myc oncoprotein levels were maturation stage-dependent, with high levels expressed within CD34+ marrow cells, decreasing markedly with myeloid maturation. Treatment of seven MDS patients with the cytokines granulocyte colony-stimulating factor plus erythropoietin was associated with decreased levels of apoptosis within CD34+ marrow cells and may contribute to the enhanced hematopoiesis in vivo that was shown. These findings are consistent with the hypothesis that altered balance between cell-death (eg, c-Myc) and cell-survival (eg, Bcl-2) programs were associated with the increased degrees of apoptosis present in MDS hematopoietic precursors and may contribute to the ineffective hematopoiesis in this disorder, in contrast to decreased apoptosis and enhanced leukemic cell survival in AML.

Blood ◽  
1996 ◽  
Vol 88 (11) ◽  
pp. 4275-4287 ◽  
Author(s):  
R Rajapaksa ◽  
N Ginzton ◽  
LS Rott ◽  
PL Greenberg

Ineffective hematopoiesis with associated cytopenias and potential evolution to acute myeloid leukemia (AML) characterize patients with myelodysplastic syndrome (MDS). We evaluated levels of apoptosis and of apoptosis-related oncoproteins (c-Myc, which enhances, and Bcl-2, which diminishes apoptosis) expressed within CD34+ and CD34- marrow cell populations of MDS patients (n = 24) to determine their potential roles in the abnormal hematopoiesis of this disorder. Marrow cells were permeabilized and CD34+ and CD34- cells were separately analyzed by FACS to detect: (1) a subdiploid (sub-G1) DNA population, and (2) expression of Bcl-2 and c-Myc oncoproteins. Within the CD34+ subset, a significantly increased percentage of cells demonstrated apoptotic/sub- G1 DNA content in early (ie. refractory anemia) MDS patients compared with normal individuals and AML patients (mean values: 9.1% > 2.1% > 1.2%). Correlated with these findings, the ratio of expression of c-Myc to Bcl-2 oncoproteins among CD34+ cells was significantly increased for MDS patients compared to those from normal and AML individuals (mean values: 1.6 > 1.2 > 0.9). Bcl-2 and c-Myc oncoprotein levels were maturation stage-dependent, with high levels expressed within CD34+ marrow cells, decreasing markedly with myeloid maturation. Treatment of seven MDS patients with the cytokines granulocyte colony-stimulating factor plus erythropoietin was associated with decreased levels of apoptosis within CD34+ marrow cells and may contribute to the enhanced hematopoiesis in vivo that was shown. These findings are consistent with the hypothesis that altered balance between cell-death (eg, c-Myc) and cell-survival (eg, Bcl-2) programs were associated with the increased degrees of apoptosis present in MDS hematopoietic precursors and may contribute to the ineffective hematopoiesis in this disorder, in contrast to decreased apoptosis and enhanced leukemic cell survival in AML.


Blood ◽  
1996 ◽  
Vol 87 (10) ◽  
pp. 4136-4142 ◽  
Author(s):  
I Kawashima ◽  
ED Zanjani ◽  
G Almaida-Porada ◽  
AW Flake ◽  
H Zeng ◽  
...  

Using in utero transplantation into fetal sheep, we examined the capability of human bone marrow CD34+ cells fractionated based on Kit protein expression to provide long-term in vivo engraftment. Twelve hundred to 5,000 CD34+ Kit-, CD34+ Kit(low), and CD34+ Kit(high) cells were injected into a total of 14 preimmune fetal sheep recipients using the amniotic bubble technique. Six fetuses were killed in utero 1.5 months after bone marrow cell transplantation. Two fetuses receiving CD34+ Kit(low) cells showed signs of engraftment according to analysis of CD45+ cells in their bone marrow cells and karyotype studies of the colonies grown in methylcellulose culture. In contrast, two fetuses receiving CD34+ Kit(high) cells and two fetuses receiving CD34+ Kit- cells failed to show evidence of significant engraftment. Two fetuses were absorbed. A total of six fetuses receiving different cell populations were allowed to proceed to term, and the newborn sheep were serially examined for the presence of chimerism. Again, only the two sheep receiving CD34+ Kit(low) cells exhibited signs of engraftment upon serial examination. Earlier in studies of murine hematopoiesis, we have shown stage-specific changes in Kit expression by the progenitors. The studies of human cells reported here are in agreement with observations in mice, and indicate that human hematopoietic stem cells are enriched in the Kit(low) population.


Blood ◽  
2001 ◽  
Vol 98 (12) ◽  
pp. 3492-3494 ◽  
Author(s):  
Udomsak Bunworasate ◽  
Hilal Arnouk ◽  
Hans Minderman ◽  
Kieran L. O'Loughlin ◽  
Sheila N. J. Sait ◽  
...  

Abstract Acute monoblastic leukemia (acute myeloid leukemia [AML], French-American-British type M5a) with leukemia cutis developed in a patient 6 weeks after the initiation of erythropoietin (EPO) therapy for refractory anemia with ringed sideroblasts. AML disappeared from both marrow and skin after the discontinuation of EPO. Multiparameter flow cytometric analysis of bone marrow cells demonstrated coexpression of the EPO receptor with CD45 and CD13 on the surface of blasts. The incubation of marrow cells with EPO, compared to without, resulted in 1.3- and 1.6-fold increases, respectively, in tritiated thymidine incorporation and bromodeoxyuridine incorporation into CD13+ cells. Clinical and laboratory findings were consistent with the EPO-dependent transformation of myelodysplastic syndrome (MDS) to AML. It is concluded that leukemic transformation in patients with MDS treated with EPO may be EPO-dependent and that management should consist of the discontinuation of EPO followed by observation, if clinically feasible.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 353-359 ◽  
Author(s):  
Mariusz Z. Ratajczak ◽  
Janina Ratajczak ◽  
Boguslaw Machalinski ◽  
Rosemarie Mick ◽  
Alan M. Gewirtz

AbstractThrombocytopenia is typically observed in patients undergoing hematopoietic stem cell transplantation. We hypothesized that delayed platelet count recovery might be ameliorated by increasing the number of megakaryocyte colony- forming units (CFU-Meg) in the hematopoietic cell graft. To test this hypothesis, we evaluated cytokine combinations and culture medium potentially useful for expanding CFU-Meg in vitro. We then examined the ability of expanded cells to accelerate platelet recovery in an animal transplant model. Depending on the cytokine combination used, we found that culturing marrow CD34+cells for 7 to 10 days in serum-free cultures was able to expand CFU-Meg ∼40 to 80 times over input number. Shorter incubation periods were also found to be effective and when CD34+ cells were exposed to thrombopoietin (TPO), kit ligand (KL), interleukin-1α (IL-1α), and IL-3 in serum-free cultures for as few as 48 hours, the number of assayable CFU-Meg was still increased ∼threefold over input number. Of interest, cytokine primed marrow cells were also found to form colonies in vitro more quickly than unprimed cells. The potential clinical utility of this short-term expansion strategy was subsequently tested in an in vivo animal model. Lethally irradiated Balb-C mice were transplanted with previously frozen syngeneic marrow mononuclear cells (106/mouse), one tenth of which (105) had been primed with [TPO, KL, IL-1a, and IL-3] under serum-free conditions for 36 hours before cryopreservation. Mice receiving the primed frozen marrow cells recovered their platelet and neutrophil counts 3 to 5 days earlier than mice transplanted with unprimed cells. Mice which received marrow cells that had been primed after thawing but before transplantation had similar recovery kinetics. We conclude that pretransplant priming of hematopoietic cells leads to faster recovery of all hematopoietic lineages. Equally important, donor cell priming before transplant may represent a highly cost-effective alternative to constant administration of cytokines during the posttransplant recovery period.


Blood ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 1690-1700 ◽  
Author(s):  
Lies H. Hoefsloot ◽  
Martine P. van Amelsvoort ◽  
Lianne C.A.M. Broeders ◽  
Dorien C. van der Plas ◽  
Kirsten van Lom ◽  
...  

Abstract Patients with myelodysplastic syndrome (MDS) have ineffective in vivo and in vitro erythropoiesis, characterized by an impaired response to erythropoietin (Epo). We examined proliferation and maturation of MDS marrow cells in response to Epo in more detail. Epo-dependent DNA synthesis as well as induction of GATA-1 binding activity in marrow cells from 15 MDS cases were severely reduced as compared with normal bone marrow (NBM). Additionally, the appearance of morphologically identifiable erythroid cells was decreased in MDS cell cultures. These data indicate that both the Epo-dependent proliferation as well as the differentiation induction by Epo is suppressed. To study more upstream events of the Epo signal transduction route we investigated activation of the signal transducer and activator of transcription (STAT) 5. In all 15 MDS samples tested, STAT5 activation was absent or greatly suppressed in response to Epo. In contrast, interleukin-3 induced a normal STAT5 response in MDS cells. Further, in MDS the subset of CD71+ BM cells that is phenotypically similar to Epo-responsive cells in normal marrow, was present. We conclude that the Epo response in MDS is disturbed at an early point in the Epo receptor (EpoR) signal transduction pathway.


2020 ◽  
Vol 4 (24) ◽  
pp. 6189-6198
Author(s):  
Ellen Fraint ◽  
María Feliz Norberto ◽  
Teresa V. Bowman

Abstract Transplantation is the most common assay for measuring the in vivo functionality of hematopoietic stem cells (HSCs). Although various HSC transplantation strategies have been developed in zebrafish, they are underutilized because of challenges related to immune matching and preconditioning toxicity. To circumvent these limitations, we developed a simple and robust transplantation model using HSC-deficient hosts. Homozygous runx1W84X mutants are devoid of definitive hematopoietic cells, including HSCs and adaptive immune cells; thus, they require no preconditioning regimen for transplantation. Marrow cell transplantation into runx1-mutant zebrafish 2 days after fertilization significantly improved their survival to adulthood and resulted in robust, multilineage, long-lasting, serially repopulating engraftment. Furthermore, we demonstrated that engraftment into runx1 homozygous mutants was significantly higher than into runx1 heterozygotes, demonstrating that the improved transplantation success is attributable to the empty HSC niche in mutants and not just the embryonic environment. Competitive transplantation of marrow cells into runx1 mutants revealed a stem cell frequency similar to that of murine marrow cells, which demonstrates the utility of this model for quantifying HSC function. The streamlined approach and robustness of this assay will help broaden its feasibility for future high-throughput transplantation experiments in zebrafish and will enable further novel discoveries in the biology of HSCs.


Blood ◽  
1982 ◽  
Vol 59 (2) ◽  
pp. 408-420 ◽  
Author(s):  
G Pigoli ◽  
A Waheed ◽  
RK Shadduck

Abstract Radioiodinated L-cell-derived colony-stimulating factor (CSF) was used to characterize the binding reaction to murine bone marrow cells. The major increment in cell-associated radioactivity occurred over 24 hr incubation at 37 degrees C, but virtually no binding was observed at 4 degrees C. The reaction was saturable with approximately 1 ng/ml of purified CSF. Unlabeled CSF prevented the binding, whereas a number of other hormones and proteins did not compete for CSF uptake. Further specificity studies showed virtually no binding to human bone marrow, which is unresponsive to this form of murine CSF. Minimal CSF uptake was noted with murine peritoneal macrophages, but virtually no binding was detected with thymic, lymph node, liver, or kidney cells. The marrow cell interaction with tracer appeared to require a new protein synthesis, as the binding was prevented by cycloheximide or puromycin. Preincubation of marrow cells in medium devoid of CSF increased the degree of binding after 1 hr exposure to the tracer. This suggests that CSF binding sites may be occupied or perhaps decreased in response to ambient levels of CSF in vivo. Approximately 70% of the bound radioactivity was detected in the cytoplasm at 24 hr. This material was partially degraded as judged by a decrease in molecular weight from approximately 62,000 to 2 peaks of approximately 32,000 and approximately 49,000, but 72% of the binding activity was retained. After plateau binding was achieved, greater than 80% of the radioactivity released into the medium was degraded into biologically inactive peptides with molecular weights less than 10,000. These findings suggest that the interaction of CSF with marrow cells is characterized by binding with subsequent internalization and metabolic degradation into portions of the molecule that are devoid of biologic activity.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4601-4601
Author(s):  
Radu B. Gologan ◽  
Didona Vasilache ◽  
Daniela G. Georgescu

Abstract Introduction. The myelodysplastic syndrome (MDS) is mostly observed in patients older than 65 years and therefore there are few reports refering to patients less than 50 years old. However, the interest for this group of MDS patients is increasing because: these patients are doing an active life and therefore the disease have higher socio-economic consequences, their comorbidities are much more rare, there are important ethnic differences in frequency between western and eastern countries, the age-related genetic instability could not be incriminated in the pathogenesis of their MDS, they are the main candidates for aggressive treatments (high doses chemotherapy, bone marrow transplantation). Patients and methods. Sixty six cases with age under 50 years were extracted from the data-base of the MDS Registry of the Clinic of Hematology, Fundeni Clinical Institute, Bucharest, Romania comprising 404 primary cases, collected between 1982 and 2004. The registration form, using the FAB classification, was kindly provided by MDS Foundation (USA)(Chairman Prof. J.M. Bennett). The parameters included in the analysis were: age at presentation, sex, place of residence, values of hemoglobin, neutrophil count, platelet count, percentage of bone marrow blasts, prognostic scores, duration until acute leukemia (AL) transformation. The frequency of different subtypes of MDS and the dynamics of the new cases during the analysed period were also determined. A comparison with the group of age above 60 years and with other similar reference studies was performed. Results. There were 66 (16,7%) cases from which 22 (62,6%) were under 40 and 19 (28.3%) under 30 years old, with a mean age of 34,7 years. A global predominance of the feminine gender and of the urban location with no geographic aggregation could be noticed. The mean values of hemoglobin, neutrophils and platelets were 7.6 g/dL, 2,500/μL and 142.000/μL, respectively. Patients with refractory anemia (RA) and refractory anemia with ringed sideroblasts (RARS) accounted for 46.7% of all cases (RA 34,8%, RARS 11,9%), refractory anemia with excess of blasts (RAEB) 20,8%, RAEB in transformation (RAEB-T) 13,4%, chronic myelomonocytic leukemia 4,4% and unclassified 13,4%. The annual number of new cases increased three times during the analysed period, the increase being not uniform, with a peak in 2000, and not homogeneous. The subtypes with the most important increase in time were RA and RAEB-T. The AL transformation could be registered in 25.7%, after a mean time of 5 months. Conclusions. This study indicates a higher proportion (16.7%) and a lower age (34.7) of young patients with MDS in Romania, considered almost in the middle among those reported for western and eastern countries. The tendancy of the annual frequency of the new cases indicated a three times increase. An urban predominant location, in contrast with that of the group above 60 years old, has been noticed. The female predominance appears as a characteristic feature of the patients with MDS from this group of age. The degree of anemia was obviously more severe than that reported in other studies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 484-484 ◽  
Author(s):  
Carolina Schinke ◽  
Orsolya Giricz ◽  
Shanisha A. K. Gordon ◽  
Laura Barreyro ◽  
Tushar D. Bhagat ◽  
...  

Abstract Acute Myeloid Leukemia (AML) and Myelodysplastic syndrome (MDS) arise from accumulation of multiple stepwise genetic and epigenetic changes in hematopoietic stem cells (HSC) and/or committed progenitors. A series of transforming events can initially give rise to pre-leukemia stem cells (pre-LSC) as well as fully transformed leukemia stem cells (LSC), both of which need to be targeted in strategies aimed at curing these diseases. We conducted parallel transcriptional analysis of multiple, highly fractionated stem and progenitor populations in individual patients of MDS and AML (N=16) and identified candidate genes that are consistently dysregulated at multiple immature stem and progenitor cell stages. Interleukin 8 (IL8), was one of the most consistently overexpressed genes in MDS/AML Hematolpoetic Stem Cells (HSCs) and progenitors when compared to healthy control HSCs and progenitors. IL8 is a pro-inflammatory chemokine, which is able to activate multiple intracellular signaling pathways after binding to its surface receptor CXCR2. Even though increased IL8-CXCR2 signaling has been shown to promote angiogenesis, metastasis and chemotherapy resistance in many solid tumors, its role in AML and MDS is not well elucidated. We further analyzed gene expression profiles of CD34+ cells from 183 MDS patients and found significant increased expression of CXCR2 in MDS when compared to healthy controls (FDR<0.1). Most importantly, analysis of The Cancer Genome Atlas (TCGA) AML (n=200) dataset showed that CXCR2 expression was predictive of significantly adverse prognosis (log rank P value=0.0182; median survival of 245 days in cxcr2 high vs 607 days in cxcr2 low) in patients, further pointing to a critical role of IL8-CXCR2 signaling in AML/MDS. Next, we studied the functional role of IL8 and CXCR2 in AML. A panel of leukemic cell lines (THP-1, U937, KG-1, MOLM13, HL-60, K532) were screened for CXCR2 expression and revealed significantly higher expression when compared to healthy CD34+ control cells. SB-332235, a specific inhibitor of CXCR2 was used for functional studies. CXCR2 inhibition led to significant, (p<0.05) reduction in proliferation in all 6 cell lines tested and an effect was seen as early as 24 hrs of exposure. CXCR2 inhibition was found to lead to G0/G1 cell cycle arrest and trigged apoptosis in THP-1 and U937 cells (p-value 0.004 and 0.02 respectively). Incubation of primary AML/MDS bone marrow samples with SB-332235 similarly lead to significantly reduced proliferation at 24hrs, when compared to healthy CD34+ cells. Selective, and highly significant inhibition of leukemic cell growth was also seen in colony assays from primary MDS/AML samples (mean leukemic colonies in AML/MDS= 73 vs 313 in controls, P < 0.001). Interestingly, inhibition of CXCR2 in primary AML marrow samples led to induction of apoptosis in immature CD34+/CD38- cells when compared to healthy controls. Lastly, xenografting studies with THP-1 leukemic cells revealed that CXCR2 inhibitor treatment led to decreased leukemic burden and organ infiltration when compared to placebo controls in vivo. In summary we have found significantly increased expression of IL8 and its receptor CXCR2 in sorted HSCs and progenitors from AML and MDS patients. High CXCR2 expression was a marker of adverse prognosis in a large cohort of AML patients. Most importantly, in vitro and in vivo functional studies showed that CXCR2 is a potential therapeutic target in AML/MDS and is able to selectively target immature, LSC-enriched cell fractions in AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2927-2927 ◽  
Author(s):  
Jerome Paggetti ◽  
Franziska Haderk ◽  
Martina Seiffert ◽  
Bassam Janji ◽  
Yeoun Jin Kim ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL), the most common hematologic malignancy in Western countries, is mostly affecting the elderly over 65 year-old. CLL is characterized by the accumulation of mature but non-functional B lymphocytes of clonal origin in the blood and the primary lymphoid organs. CLL was previously considered as a relatively static disease resulting from the accumulation of apoptosis-resistant but quiescent B lymphocytes. However, recent studies using heavy water labeling indicated that CLL is in fact a very dynamic disease with alternation of proliferation phases and peripheral circulation. A focus on the trafficking of CLL cells in vivo has shown that leukemic cells circulate between the blood and the lymphoid organs but have a preference for the bone marrow. Recent next-generation sequencing of CLL cells indicated the presence of different genetic subclones. This intraclonal heterogeneity observed in CLL subpopulations may be in part determined by the interactions that leukemic cells entertain with their microenvironment when B cells migrate into the lymph nodes and the bone marrow. Indeed, tumor-stroma interactions are not only providing signals necessary for leukemic cells survival but may also influence the clonal architecture and evolution. One of these interactions involves CLL-derived exosomes. Here, we show that CLL-exosomes efficiently transfer nucleic acids, including functional microRNAs, and proteins, including MHC-Class II molecules and B-cell specific proteins, to bone marrow mesenchymal stem cells and endothelial cells. CLL-exosomes also activate signaling pathways, including PI3K and NF-κB pathways, in these stromal cells. As a consequence, gene expression is strongly modified indicating a switch towards a cancer-associated fibroblast phenotype. Functionally, exosome-stimulated stromal cells show a striking actin cytoskeleton remodeling characterized by the formation of stress fibers, and enhanced proliferation, motility and angiogenic properties. We also identified several proteins synthesized and secreted by stromal cells that promote leukemic cell adhesion and survival ex vivo. To confirm the involvement of CLL-exosomes in CLL pathology in vivo, MEC-1-eGFP cells were subcutaneously injected into immunocompromised NSG mice together with CLL-exosomes. We observed a significant increase in tumor size and a reduction in survival of exosome-treated animals. Flow cytometry analysis of selected organs indicated an enrichment in leukemic cells in the kidney, providing a potential explanation to the renal failures observed in CLL patients. In conclusion, the communication between CLL cells and stromal cells may be a critical factor influencing CLL progression by promoting leukemic cell survival. This study demonstrates the crucial role of exosomes as mediators of the communication between leukemic cells and their microenvironment. Exosomes could thus represent a suitable target for therapeutic intervention in CLL. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document