scholarly journals The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering

Author(s):  
Gan Huang ◽  
Shu-Ting Pan ◽  
Jia-Xuan Qiu

Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, low elastic modulus and high friction coefficient of porous Ta can effectively avoid stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta based implants or prostheses are mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta based implants or prostheses have shown their clinical value in the treatment of individual patient who need specially designed implant or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2647
Author(s):  
Gan Huang ◽  
Shu-Ting Pan ◽  
Jia-Xuan Qiu

Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone–implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.


2012 ◽  
Vol 476-478 ◽  
pp. 2063-2066 ◽  
Author(s):  
Chang Jun Chen ◽  
Min Zhang

Porous tantalum; biomaterials; bone ingrowth; laser cladding; Abstract. Porous tantalum, a new low modulus metal with a characteristic appearance similar to cancellous/trabecular bone, is currently available for use in several orthopedic applications (hip and knee arthroplasty, spine surgery, and bone graft substitute). The open-cell structure of repeating dodecahedrons is produced via carbon vapor deposition/infiltration of commercially pure tantalum onto a vitreous carbon scaffolding. This transition metal maintains several interesting biomaterial properties, including: a high volumetric porosity (70-80%), low modulus of elasticity (3MPa), and high frictional characteristics. Tantalum has excellent biocompatibility and is safe to use in vivo as evidenced by its historical and current use in pacemaker electrodes, cranioplasty plates and as radiopaque markers. The bioactivity and biocompatibility of porous tantalum stems from its ability to form a self-passivating surface oxide layer. This surface layer leads to the formation of a bone-like apatite coating in vivo and affords excellent bone and fibrous in-growth properties allowing for rapid and substantial bone and soft tissue attachment. Tantalum-chondrocyte composites have yielded successful early results in vitro and may afford an option for joint resurfacing in the future. The development of porous tantalum is in its early stages of evolution and the following represents a review of its biomaterial properties and fabrication methods for applications as implant biomaterials.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1330
Author(s):  
Filipe Pinto ◽  
Liliana Santos-Ferreira ◽  
Marta T. Pinto ◽  
Catarina Gomes ◽  
Celso A. Reis

Biglycan (BGN gene), an extracellular proteoglycan, has been described to be associated with cancer aggressiveness. The purpose of this study was to clarify the clinical value of biglycan as a biomarker in multiple independent GC cohorts and determine the in vitro and in vivo role of biglycan in GC malignant features. We found that BGN is commonly over-expressed in all analyzed cohorts, being associated with disease relapse and poor prognosis in patients with advanced stages of disease. In vitro and in vivo experiments demonstrated that biglycan knock-out GC cells display major phenotypic changes with a lower cell survival, migration, and angiogenic potential when compared with biglycan expressing cells. Biglycan KO GC cells present increased levels of PARP1 and caspase-3 cleavage and a decreased expression of mesenchymal markers. Importantly, biglycan deficient GC cells that were supplemented with exogenous biglycan were able to restore biological features, such as survival, clonogenic and migratory capacities. Our in vitro and in vivo findings were validated in human GC samples, where BGN expression was associated with several oncogenic gene signatures that were associated with apoptosis, cell migration, invasion, and angiogenesis. This study provided new insights on biglycan role in GC that should be taken in consideration as a key cellular regulator with major impact in tumor progression and patients’ clinical outcome.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 966 ◽  
Author(s):  
Marianna Buttarelli ◽  
Marta De Donato ◽  
Giuseppina Raspaglio ◽  
Gabriele Babini ◽  
Alessandra Ciucci ◽  
...  

Long non-coding RNAs (lncRNAs) are emerging as regulators in cancer development and progression, and aberrant lncRNA profiles have been reported in several cancers. Here, we evaluated the potential of using the maternally expressed gene 3 (MEG3) tissue level as a prognostic marker in high-grade serous ovarian cancer (HGSOC), the most common and deadliest gynecologic malignancy. To the aim of the study, we measured MEG3 transcript levels in 90 pre-treatment peritoneal biopsies. We also investigated MEG3 function in ovarian cancer biology. We found that high MEG3 expression was independently associated with better progression-free (p = 0.002) and overall survival (p = 0.01). In vitro and in vivo preclinical studies supported a role for MEG3 as a tumor suppressor in HGSOC, possibly through modulation of the phosphatase and tensin homologue (PTEN) network. Overall, results from this study demonstrated that decreased MEG3 is a hallmark for malignancy and tumor progression in HGSOC.


Cerâmica ◽  
2012 ◽  
Vol 58 (348) ◽  
pp. 481-488 ◽  
Author(s):  
F. A. Macedo ◽  
E. H. M. Nunes ◽  
W. L. Vasconcelos ◽  
R. A. Santos ◽  
R. D. Sinisterra ◽  
...  

Highly porous three-dimensional biodegradable scaffolds was obtained from beta-tricalcium phosphate-hydroxyapatite bioceramic (BCP), PCL, and Angiotensin-(1-7). We used the solvent casting and particulate leaching methods (SC/PL). The processed scaffolds were characterized by X-ray microtomography (µ-CT). Biocompatibility tests in vitro were performed during three and seven days using MTT and Alkaline Phosphatase Activity (APA) assays. Both the MTT activity and APA were evaluated using a one-way ANOVA test. The µ-CT results showed that the increase of the PCL:BCP weight ratio leads to structures with lower pore sizes. The pore interconnectivity of the processed scaffolds was evaluated in terms of the fragmentation index (FI). We observed that the obtained composites present poorly connected structures, with close values of FI. However, as the polymer phase is almost transparent to the X-rays, it was not taken into consideration in the µ-CT tests. The MTT activity assay revealed that scaffolds obtained with and without Angiotensin-(1-7) present mild and moderate cytotoxic effects, respectively. The APA assay showed that the rat osteoblasts, when in contact for three days with the PCL composites, presented an APA similar to that observed for the control cells. Nevertheless, for an incubation time of seven days we observed a remarkable decrease in the alkaline phosphatase activity. In conclusion, using the solvent casting and salt leaching method we obtained 3D porous that are composites of PCL, BC and Ang-(1-7), which have suitable shapes for the bone defects, a high porosity and interconnect pores. Furthermore, the viability in vitro showed that the scaffolds have potential for drug delivery system and could be used in future in vivo tests.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Matthew Zimmerman ◽  
Jodi Lestner ◽  
Brendan Prideaux ◽  
Paul O'Brien ◽  
Isabela Dias-Freedman ◽  
...  

ABSTRACT Clinical trials and practice have shown that ethambutol is an important component of the first-line tuberculosis (TB) regime. This contrasts the drug's rather modest potency and lack of activity against nongrowing persister mycobacteria. The standard plasma-based pharmacokinetic-pharmacodynamic profile of ethambutol suggests that the drug may be of limited clinical value. Here, we hypothesized that this apparent contradiction may be explained by favorable penetration of the drug into TB lesions. First, we utilized novel in vitro lesion pharmacokinetic assays and predicted good penetration of the drug into lesions. We then employed mass spectrometry imaging and laser capture microdissection coupled to liquid chromatography and tandem mass spectrometry (LCM and LC/MS-MS, respectively) to show that ethambutol, indeed, accumulates in diseased tissues and penetrates the major human-like lesion types represented in the rabbit model of TB disease with a lesion-to-plasma exposure ratio ranging from 9 to 12. In addition, ethambutol exhibits slow but sustained passive diffusion into caseum to reach concentrations markedly higher than those measured in plasma at steady state. The results explain why ethambutol has retained its place in the first-line regimen, validate our in vitro lesion penetration assays, and demonstrate the critical importance of effective lesion penetration for anti-TB drugs. Our findings suggest that in vitro and in vivo lesion penetration evaluation should be included in TB drug discovery programs. Finally, this is the first time that LCM with LC-MS/MS has been used to quantify a small molecule at high spatial resolution in infected tissues, a method that can easily be extended to other infectious diseases.


2021 ◽  
Vol 21 (2) ◽  
pp. 878-885
Author(s):  
Li Liu ◽  
Tingting Shen ◽  
Hongfang Liu ◽  
Gen Zhang ◽  
Yongfu Shao

The multifunctional nano-carrier system can simultaneously achieve multiple functions such as diagnostic imaging, targeted delivery of anti-tumor drugs, and combined therapy. Application potential Fe3O4 magnetic nanoparticles have the characteristics of low toxicity, superparamagnetism and good photothermal properties. Therefore, a multifunctional magnetic nanocarrier with both magnetic targeting and photothermal properties can be prepared by surface modification of Fe3O4 o DOX is an anti-tumor drug widely used in clinical treatment, and its severe toxic and side effects greatly limit its application. In this paper, a temperature-sensitive magnetic nanocarrier was first constructed and proved to have good superparamagnetism, photothermal properties, and biocom-patibility Then, Fe3O4-Azo-DOX drug-loaded nanoparticles were constructed by covalently bonding DOX. The prepared Fe3O4-Azo-DOX nanoparticles have high stability, sensitive photothermal response and low toxicity. Finally, Fe3O4-Azo-DOX was applied to the study of combined photother-motherapy and chemotherapy in vitro and in vivo. Based on Fe3O4 nanoparticles, a temperature-sensitive Fe3O4-Azo nanocarrier was constructed and its related properties were characterized. Furthermore, anthracycline nanodrugs were used in chemotherapy of breast cancer patients, and their effects were analyzed according to echocardiography parameter change. The results show that Fe3O4-Azo nanoparticles have a good photothermal heating effect. MCF-7 breast cancer cells were selected as a model to investigate the cytotoxicity of Fe3O4-Azo. The results proved that they have excellent biocompatibility and can be used as drug carriers. A Fe3O4-Azo nanocarrier was used to load DOX to construct a NIR-responsive nano-drug delivery system. By studying the NIR controlled release of Fe3O4-Azo-DOX under different pH conditions, it can be seen that it has NIR-responsive release function and the best release effect at pH 5.7. It was found that LVEF, LVFS, and E/A were significantly lower after chemotherapy than before (P < 0.05), which had a certain clinical value in cardiotoxicity The in vitro antitumor effect of Fe3O4-Azo-DOX was studied, and the results showed that the combined effect of photothermal-chemotherapy was significantly better than the photothermal treatment based on Fe3O4-Azo carrier alone and the chemotherapy based on free DOX alone.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1102-1102
Author(s):  
John Tkaczynski ◽  
Randolph Lyde ◽  
Hyunsook Ahn ◽  
Francis Ayombil ◽  
Sara Borst ◽  
...  

Human platelets endocytose coagulation factor (F) V into their α-granules, in part, via low-density lipoprotein (LDL) receptor-related protein 1 (LRP1). In contrast to humans, mouse FV is endogenously expressed during megakaryopoiesis and stored in α-granules. The FV-related coagulation factor FVIII is not endogenously expressed in megakaryocytes (Mks) and thought not to be endocytosed by human or murine Mks/platelets. The lack of FVIII endocytosis is surprising as LRP1 on multiple cell types is involved in FVIII uptake and clearance. We and others have shown that FVIII can be ectopically expressed during human or murine megakaryopoiesis and stored in α-granules. These platelets are effective in the delivery of FVIII to sites of vascular injury and improve outcome in hemophilia A (HA) mice even in the presence of circulating inhibitors. Thus, it has been proposed that lentiviral bone marrow gene therapy to ectopically express FVIII during megakaryopoiesis may be a curative strategy especially for patients with HA and intractable inhibitors. However, we have shown that pFVIII has a toxic effect on Mks during intracellular processing in the endoplasmic reticulum/Golgi, limiting platelet yield and pFVIII levels. We have recently shown that exogenous FV can be taken up by in vitro differentiated CD34+- and by induced pluripotent stem cell (iPSC)-derived Mks and asked if the same can be done with FVIII. We found that Mks can take up full-length FVIII (Advate) (Fig. 1A), B-domainless (BD) FVIII (Xyntha, not shown) and BD FVIIIR1645H (not shown), a FVIII mutant we have shown is particularly effective when released by platelets. Uptake is half maximum at 0.25 IU/ml following overnight incubation. Endocytosed FVIII colocalizes with labeled fibrinogen uptake (Fig. 1A), supporting its localization to α-granules, and this FVIII uptake can be blocked by receptor-associated protein (RAP), a blocker of LDL receptor family members, including LRP1 (Fig. 1A) or by including FVIII's carrier protein von Willebrand factor (VWF) (Fig. 1B). To test the biological efficacy of endocytosed pFVIII, we took advantage of our previous studies showing that infused Mks into mice release highly functional platelets after becoming entrapped in the lungs. To focus our studies on the released human platelets and the hemostatic efficacy of the endocytosed pFVIII, we used immunodeficient NOD-scid IL2rgnull (NSG) mice that were also FVIII-deficient and that only expressed mutant VWF that binds human, but not mouse, platelet glycoprotein Ib/IX (VWFR1326H) (N/8/V mice). We infused 1x106 human FVIII-endocytosed Mks into these N/8/V mice resulting in ~1-10% being human platelets in recipient mice. We studied hemostatic efficacy by rotational thromboelastography (ROTEM) and demonstrated that the in vivo-released FVIII from released human platelets within the N/8/V blood corrected hemostasis in this system (Fig. 1C). These FVIII-containing platelets fully corrected clotting as well in a FeCl3 carotid artery injury model (Fig. 1D). In summary, we found that in vitro-grown human Mks can endocytose FVIII from the media into their α-granules in sufficient amounts to have potential clinical application in the care of HA patients. This endocytosis is likely via LRP1. FVIII is not found normally in platelets likely because of a combination of the following: 1) in plasma, FVIII it is bound to VWF, 2) circulating platelets also lack LRP1, and 3) in the marrow, there is little or no free FVIII for endocytosis by LRP1-positive Mks. We propose that endocytosed FVIII by Mks can be an important clinical application of commercial, in vitro-grown Mks for patients with HA and inhibitors who need supplemental long-lasting, hemostatic support to their emicizumab without the thrombotic risks of FVIII-bypassing agents. Disclosures Sabatino: Spark Therapeutics: Patents & Royalties. Camire:Pfizer: Research Funding.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Savira Ekawardhani ◽  
Utari T. Anggoro ◽  
Ita Krissanti

Ancylostoma caninum is one of the most important hookworms in dogs. A study revealed that the prevalence of ancylostomiasis in Indonesia is relatively high. However, cases of persistent ancylostomiasis in dogs were reported, indicating the possibility of anthelmintic resistance. The aim of this review is to provide an overview of the anthelmintic potential of plants preclinically against A. caninum based on related research articles. This review retrieved 14 articles from 2001 to 2021 investigating 19 different plants. Momordica charantia, Diospyros anisandra, and Citrus aurantiifolia hold a promising prospect as anthelmintic against A. caninum. This review found aspects of those medicinal plants that need to be investigated deeper to improve our understanding of the matter. In vitro results in this review have not yet been tested in in vivo trials, which are essential in determining the efficacy and safety of the use of these medicinal plants and also to justify its clinical application.


2018 ◽  
Author(s):  
Soham Ghosh ◽  
Benjamin Seelbinder ◽  
Jonathan T. Henderson ◽  
Ryan D. Watts ◽  
Alexander I. Veress ◽  
...  

AbstractStructural heterogeneity is a hallmark of living cells and nuclei that drives local mechanical properties and dynamic cellular responses, including adhesion, gene expression, and differentiation. However, robust quantification of intracellular or intranuclear mechanics are lacking from conventional methods. Here, we describe new development of deformation microscopy that leverages conventional imaging and an automated hyperelastic warping algorithm to investigate strain history, deformation dynamics, and changes in structural heterogeneity within the interior of cells and nuclei. Using deformation microscopy, we found that tensile loading modes dominated intranuclear architectural dynamics in cardiomyocytes in vitro or myocytes in vivo, which was compromised by disruption of LINC complex molecule nesprin-3 or Lamin A/C, respectively. We also found that cells cultured on stiff substrates or in hyperosmotic conditions displayed abnormal strain burden and asymmetries compared to controls at interchromatin regions where active translation was expected. Deformation microscopy represents a foundational approach toward intracellular elastography, with potential utility to provide new mechanistic and quantitative insights in diverse mechanobiological applications.


Sign in / Sign up

Export Citation Format

Share Document