Wavelet-Like Receptive Fields Emerges by Non-Linear Minimization of Neuron Error

2003 ◽  
Vol 13 (02) ◽  
pp. 87-91
Author(s):  
Allan Kardec Barros ◽  
Andrzej Cichocki ◽  
Noboru Ohnishi

Redundancy reduction as a form of neural coding has been since the early sixties a topic of large research interest. A number of strategies has been proposed, but the one which is attracting most attention recently assumes that this coding is carried out so that the output signals are mutually independent. In this work we go one step further and suggest an strategy to deal also with non-orthogonal signals (i.e., ''dependent'' signals). Moreover, instead of working with the usual squared error, we design a neuron where the non-linearity is operating on the error. It is computationally more economic and, importantly, the permutation/scaling problem10 is avoided. The framework is given with a biological background, as we avocate throughout the manuscript that the algorithm fits well the single neuron and redundancy reduction doctrine.5 Moreover, we show that wavelet-like receptive fields emerges from natural images processed by this algorithm.

2013 ◽  
Vol 336-338 ◽  
pp. 2381-2387
Author(s):  
Jin Yu Wang ◽  
Xiu Ying Li ◽  
Lin Mao ◽  
Jing Yan Xue ◽  
Hua Meng

The filtering problem is studied for a class of discrete-time systems under the effect of the networks. The investigated issues involved by the network include the consecutive packet dropouts and the one-step transmission delays which can be described by a sequence of mutually independent Bernoulli distributed stochastic variables. A full-order filter is designed such that the filtering error system is exponentially stable in the mean square and the performance is also achieved. Sufficient conditions are developed for the addressed problem and the desired filter is derived by means of the feasibility of certain linear matrix inequality. Numerical example is given to illustrate the effectiveness of the proposed method.


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jermyn Z. See ◽  
Natsumi Y. Homma ◽  
Craig A. Atencio ◽  
Vikaas S. Sohal ◽  
Christoph E. Schreiner

AbstractNeuronal activity in auditory cortex is often highly synchronous between neighboring neurons. Such coordinated activity is thought to be crucial for information processing. We determined the functional properties of coordinated neuronal ensembles (cNEs) within primary auditory cortical (AI) columns relative to the contributing neurons. Nearly half of AI cNEs showed robust spectro-temporal receptive fields whereas the remaining cNEs showed little or no acoustic feature selectivity. cNEs can therefore capture either specific, time-locked information of spectro-temporal stimulus features or reflect stimulus-unspecific, less-time specific processing aspects. By contrast, we show that individual neurons can represent both of those aspects through membership in multiple cNEs with either high or absent feature selectivity. These associations produce functionally heterogeneous spikes identifiable by instantaneous association with different cNEs. This demonstrates that single neuron spike trains can sequentially convey multiple aspects that contribute to cortical processing, including stimulus-specific and unspecific information.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Babacar Faye ◽  
Mouhamed Sarr ◽  
Khaly Bane ◽  
Adjaratou Wakha Aidara ◽  
Seydina Ousmane Niang ◽  
...  

This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching.


2021 ◽  
Author(s):  
Dennis Larsen ◽  
Sophie R. Beeren

Template-induced kinetic trapping of specific cyclodextrins in enzyme-mediated dynamic combinatorial libraries of linear and cyclic α-glucans enables the one-step synthesis of cyclodextrins from maltose in water.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Elena O. Vidyagina ◽  
Nikolay N. Kharchenko ◽  
Konstantin A. Shestibratov

Axillary buds of in vitro microshoots were successfully frozen at –196 °C by the one-step freezing method using the protective vitrification solution 2 (PVS2). Microshoots were taken from 11 transgenic lines and three wild type lines. Influence of different explant pretreatments were analyzed from the point of their influence towards recovery after cryopreservation. It was found out that the use of axillary buds as explants after removal of the apical one increases recovery on average by 8%. The cultivation on growth medium of higher density insignificantly raises the regenerants survival rate. Pretreatment of the osmotic fluid (OF) shows the greatest influence on the survival rate. It leads to the increase in survival rate by 20%. The cryopreservation technology providing regenerants average survival rate of 83% was developed. It was based on the experimental results obtained with explant pretreatment. Incubation time in liquid nitrogen did not affect the explants survival rate after thawing. After six months cryostorage of samples their genetic variability was analyzed. Six variable simple sequence repeat (SSR) loci were used to analyze genotype variability after the freezing-thawing procedure. The microsatellite analysis showed the genetic status identity of plants after cryopreservation and of the original genotypes. The presence of the recombinant gene in the transgenic lines after cryostorage were confirmed so as the interclonal variation in the growth rate under greenhouse conditions. The developed technique is recommended for long-term storage of various breeding and genetically modified lines of aspen plants, as it provides a high percentage of explants survival with no changes in genotype.


2021 ◽  
Vol 20 (5) ◽  
Author(s):  
Paweł J. Szabłowski

AbstractWe analyze the mathematical structure of the classical Grover’s algorithm and put it within the framework of linear algebra over the complex numbers. We also generalize it in the sense, that we are seeking not the one ‘chosen’ element (sometimes called a ‘solution’) of the dataset, but a set of m such ‘chosen’ elements (out of $$n>m)$$ n > m ) . Besides, we do not assume that the so-called initial superposition is uniform. We assume also that we have at our disposal an oracle that ‘marks,’ by a suitable phase change $$\varphi $$ φ , all these ‘chosen’ elements. In the first part of the paper, we construct a unique unitary operator that selects all ‘chosen’ elements in one step. The constructed operator is uniquely defined by the numbers $$\varphi $$ φ and $$\alpha $$ α which is a certain function of the coefficients of the initial superposition. Moreover, it is in the form of a composition of two so-called reflections. The result is purely theoretical since the phase change required to reach this heavily depends on $$\alpha $$ α . In the second part, we construct unitary operators having a form of composition of two or more reflections (generalizing the constructed operator) given the set of orthogonal versors. We find properties of these operations, in particular, their compositions. Further, by considering a fixed, ‘convenient’ phase change $$\varphi ,$$ φ , and by sequentially applying the so-constructed operator, we find the number of steps to find these ‘chosen’ elements with great probability. We apply this knowledge to study the generalizations of Grover’s algorithm ($$m=1,\phi =\pi $$ m = 1 , ϕ = π ), which are of the form, the found previously, unitary operators.


2021 ◽  
pp. 153062
Author(s):  
Yue Zhang ◽  
Xinpeng Liu ◽  
Yanan Wang ◽  
Yinan Zhang ◽  
Junwei Wang ◽  
...  
Keyword(s):  
One Step ◽  

Sign in / Sign up

Export Citation Format

Share Document