PARTICLE DYNAMICS SIMULATIONS OF THE NAVIER–STOKES FLOW WITH HARD DISKS

2004 ◽  
Vol 15 (10) ◽  
pp. 1413-1424 ◽  
Author(s):  
TATSUYA ISHIWATA ◽  
TERUYOSHI MURAKAMI ◽  
SATOSHI YUKAWA ◽  
NOBUYASU ITO

Flow simulation with a particle dynamics method is studied. The fluid is made of hard particles which obey the Newtonian equations of motion and the collisions between particles are elastic, that is, energy and momentum are conserved. The viscosity appears autonomously together with the local equilibrium state. When a particle collides with a nonslip boundary, a new velocity is given randomly from the thermal distribution if the wall is isothermal, or a random reflection angle is selected if the wall is adiabatic. Shear viscosity is estimated from simulations of plane Poiseuille flow together with the confirmation that the system obeys the Navier–Stokes equation. Flows past a cylinder are also simulated. Depending on the Reynolds number up to 106, flow patterns are properly reproduced, and Kármán vortex shedding is observed. The estimated values of drag coefficient show quantitative agreement with experiments.

2018 ◽  
Vol 8 (12) ◽  
pp. 2387 ◽  
Author(s):  
Yusuke Mizuno ◽  
Shun Takahashi ◽  
Kota Fukuda ◽  
Shigeru Obayashi

We investigated particulate flows by coupling simulations of the three-dimensional incompressible Navier–Stokes equation with the immersed boundary method (IBM). The results obtained from the two-way coupled simulation were compared with those of the one-way simulation, which is generally applied for clarifying the particle kinematics in industry. In the present flow simulation, the IBM was solved using a ghost–cell approach and the particles and walls were defined by a level set function. Using proposed algorithms, particle–particle and particle–wall collisions were implemented simply; the subsequent coupling simulations were conducted stably. Additionally, the wake structures of the moving, colliding and rebounding particles were comprehensively compared with previous numerical and experimental results. In simulations of 50, 100, 200 and 500 particles, particle–wall collisions were more frequent in the one–way scheme than in the two-way scheme. This difference was linked to differences in losses in energy and momentum.


2012 ◽  
Vol 24 (9) ◽  
pp. 2457-2472
Author(s):  
Jong-Hoon Ahn ◽  
In Young Kim

Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.


Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Masakazu Ono

In this paper, the dynamic stability of a thin cylindrical shell subjected to axial leakage flow is discussed. In this paper, the third part of a study of the axial leakage flow-induced vibration of a thin cylindrical shell, we focus on circumferential vibration, that is, the ovaling vibration of a shell. The coupled equations of motion between shell and liquid are obtained by using Donnell’s shell theory and the Navier-Stokes equation. The added mass, added damping and added stiffness in the coupled equations of motion are described by utilizing the unsteady fluid pressure acting on the shell. The relations between axial velocity and the unstable vibration phenomena are clarified concerning the circumferential vibration of a shell. Numerical parametric studies are done for various dimensions of a shell and an axial leakage flow.


2017 ◽  
Vol 4 (2) ◽  
pp. 160447 ◽  
Author(s):  
M. Scholle ◽  
F. Marner

Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier–Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier–Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided.


Author(s):  
A. Yadav ◽  
R. Calhoun ◽  
P. E. Phelan ◽  
A. K. Vuppu ◽  
A. A. Garcia ◽  
...  

Lattice Boltzmann (LB) simulations of Magneto-rheological fluids under a rotating magnetic field are presented in this paper. The LB method gives a complete solution of Navier-Stokes equation based on the Boltzmann transport equation. A relatively good agreement of normalized number of aggregated particles in experiments and simulations is found. Results pertaining to variation of chain length vs. Mason number are also shown. A complete analysis and comparison of forces on the particles found from LB simulations and from simple Particle dynamics (PD) type approach is also shown. Another aim of this study was to determine under what conditions do we need to solve the complete Navier-Stokes equations and under what conditions a simplistic but very fast simulation method like particle dynamics will work for Magneto-rheological fluids.


2015 ◽  
Vol 112 (34) ◽  
pp. E4642-E4650 ◽  
Author(s):  
Matthew Spellings ◽  
Michael Engel ◽  
Daphne Klotsa ◽  
Syeda Sabrina ◽  
Aaron M. Drews ◽  
...  

Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation.


2011 ◽  
Vol 317-319 ◽  
pp. 789-793
Author(s):  
Xiao Feng Shang ◽  
Liang Tong ◽  
Zhi Jian Wang

The three-Dimensional model of 40BZ6-15 centrifugal pump is built by the Solidworks software. This paper employs three-D Navier-Stokes equation and standard equation, and uses MRF and STMPLE algorithm to simulate the internal flowing of the 40BZ6 centrifugal pump. The velocity field and pressure field are gained. Through a further analysis, the rule of the internal flow of the centrifugal pump is unveiled, and then the simulative results are compared with the experimental ones, which can provide the base for the further improvement of the centrifugal pump.


1999 ◽  
Vol 393 ◽  
pp. 99-121 ◽  
Author(s):  
J. R. CHAPLIN

History forces on a stationary cylinder in arbitrary unsteady rectilinear flow are calculated by means of a model based on the asymptotic properties of the steady-state wake. The results capture many features found in numerical solutions of the Navier–Stokes equation for the same flows, though quantitative agreement deteriorates as the Reynolds number increases over the range 2 to 40. The cases studied are the impulsive start, stop, and reverse, and oscillatory flow.


Author(s):  
Ali Kharazmi ◽  
Reza Kamali

A computer program based on a Molecular Dynamics-Continuum hybrid numerical method has been developed in which the Navier-Stokes equations are solved in the continuum region and the atomistic molecular dynamics in molecular region. The prepared algorithm and the computer code are capable of computing flows in micro and nano-scale geometries. The coupling between the continuum equations and the molecular dynamics is constructed through constrained dynamics within an overlap region where both molecular and continuum equations are solved simultaneously. An Overlap region is introduced in two directions to improve the choice of using molecular region in smaller areas. The proposed method is used to simulate steady and start-up Couette flow showing quantitative agreement with results from analytical solutions and full molecular dynamics simulations.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 864 ◽  
Author(s):  
Ana Bela Cruzeiro

We present a stochastic Lagrangian view of fluid dynamics. The velocity solving the deterministic Navier–Stokes equation is regarded as a mean time derivative taken over stochastic Lagrangian paths and the equations of motion are critical points of an associated stochastic action functional involving the kinetic energy computed over random paths. Thus the deterministic Navier–Stokes equation is obtained via a variational principle. The pressure can be regarded as a Lagrange multiplier. The approach is based on Itô’s stochastic calculus. Different related probabilistic methods to study the Navier–Stokes equation are discussed. We also consider Navier–Stokes equations perturbed by random terms, which we derive by means of a variational principle.


Sign in / Sign up

Export Citation Format

Share Document