scholarly journals QUANTUM GEOMETRY AS A RELATIONAL CONSTRUCT

2002 ◽  
Vol 17 (09) ◽  
pp. 555-567 ◽  
Author(s):  
ALEJANDRO CORICHI ◽  
MICHAEL P. RYAN ◽  
DANIEL SUDARSKY

The problem of constructing a quantum theory of gravity is considered from a novel viewpoint. It is argued that any consistent theory of gravity should incorporate a relational character between the matter constituents of the theory. In particular, the traditional approach of quantizing a space–time metric is criticized and two possible avenues for constructing a satisfactory theory are put forward.

2019 ◽  
Vol 74 (7) ◽  
pp. 617-633 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe recall a classical theory of torsion gravity with an asymmetric metric, sourced by a Nambu–Goto + Kalb–Ramond string [R. T. Hammond, Rep. Prog. Phys. 65, 599 (2002)]. We explain why this is a significant gravitational theory and in what sense classical general relativity is an approximation to it. We propose that a noncommutative generalisation of this theory (in the sense of Connes’ noncommutative geometry and Adler’s trace dynamics) is a “quantum theory of gravity.” The theory is in fact a classical matrix dynamics with only two fundamental constants – the square of the Planck length and the speed of light, along with the two string tensions as parameters. The guiding symmetry principle is that the theory should be covariant under general coordinate transformations of noncommuting coordinates. The action for this noncommutative torsion gravity can be elegantly expressed as an invariant area integral and represents an atom of space–time–matter. The statistical thermodynamics of a large number of such atoms yields the laws of quantum gravity and quantum field theory, at thermodynamic equilibrium. Spontaneous localisation caused by large fluctuations away from equilibrium is responsible for the emergence of classical space–time and the field equations of classical general relativity. The resolution of the quantum measurement problem by spontaneous collapse is an inevitable consequence of this process. Quantum theory and general relativity are both seen as emergent phenomena, resulting from coarse graining of the underlying noncommutative geometry. We explain the profound role played by entanglement in this theory: entanglement describes interaction between the atoms of space–time–matter, and indeed entanglement appears to be more fundamental than quantum theory or space–time. We also comment on possible implications for black hole entropy and evaporation and for cosmology. We list the intermediate mathematical analysis that remains to be done to complete this programme.


2006 ◽  
Vol 15 (10) ◽  
pp. 1545-1559 ◽  
Author(s):  
MARTIN BOJOWALD

General relativity successfully describes space–times at scales that we can observe and probe today, but it cannot be complete as a consequence of singularity theorems. For a long time, there have been indications that quantum gravity will provide a more complete, non-singular extension which, however, was difficult to verify in the absence of a quantum theory of gravity. By now there are several candidates which show essential hints as to what a quantum theory of gravity may look like. In particular, loop quantum gravity is a non-perturbative formulation which is background independent, two properties which are essentially close to a classical singularity with strong fields and a degenerate metric. In cosmological and black hole settings, one can indeed see explicitly how classical singularities are removed by quantum geometry: there is a well-defined evolution all the way down to, and across, the smallest scales. As for black holes, their horizon dynamics can be studied showing characteristic modifications to the classical behavior. Conceptual and physical issues can also be addressed in this context, providing lessons for quantum gravity in general. Here, we conclude with some comments on the uniqueness issue often linked to quantum gravity in some form or another.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


In Einstein’s theory of gravitation it is assumed that the geometry of space- time is characterised by the following equation for the measurement of displacement:— ds 2 = g mn dx m dx n { m n = 1, 2, 3, 4, the sign of summation being omitted for convenience. It is supposed that the coefficients, of which g mn is the type, are dependent upon the content of space, and the relation existing between them is the law of gravitation.


2015 ◽  
Vol 30 (09) ◽  
pp. 1550044 ◽  
Author(s):  
L. V. Laperashvili ◽  
H. B. Nielsen ◽  
A. Tureanu

We develop a self-consistent Spin (4, 4)-invariant model of the unification of gravity with weak SU(2) gauge and Higgs fields in the visible and invisible sectors of our universe. We consider a general case of the graviweak unification, including the higher-derivative super-renormalizable theory of gravity, which is a unitary, asymptotically-free and perturbatively consistent theory of the quantum gravity.


Author(s):  
Mauro Carfora

A brief introduction to the scientic work of Stephen Hawking and to his contributions to our understanding of the interplay between general relativity and quantum theory.


Author(s):  
Jochen Rau

Recent advances in quantum technology – from quantum computers and simulators to communication and metrology – have not only opened up a whole new world of applications but also changed the understanding of quantum theory itself. This text introduces quantum theory entirely from this new perspective. It does away with the traditional approach to quantum theory as a theory of microscopic matter, and focuses instead on quantum theory as a framework for information processing. Accordingly, the emphasis is on concepts like measurement, probability, statistical correlations, and transformations, rather than waves and particles. The text begins with experimental evidence that forces one to abandon the classical description and to re-examine such basic notions as measurement, probability, and state. Thorough investigation of these concepts leads to the alternative framework of quantum theory. The requisite mathematics is developed and linked to its operational meaning. This part of the text culminates in an exploration of some of the most vexing issues of quantum theory, regarding locality, non-contextuality, and realism. The second half of the text explains how the peculiar features of quantum theory are harnessed to tackle information processing tasks that are intractable or even impossible classically. It provides the tools for understanding and designing the pertinent protocols, and discusses a range of examples representative of current quantum technology.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1334
Author(s):  
S. A. Larin

We consider R + R 2 relativistic quantum gravity with the action where all possible terms quadratic in the curvature tensor are added to the Einstein-Hilbert term. This model was shown to be renormalizable in the work by K.S. Stelle. In this paper, we demonstrate that the R + R 2 model is also unitary contrary to the statements made in the literature, in particular in the work by Stelle. New expressions for the R + R 2 Lagrangian within dimensional regularization and the graviton propagator are derived. We demonstrate that the R + R 2 model is a good candidate for the fundamental quantum theory of gravity.


Sign in / Sign up

Export Citation Format

Share Document