scholarly journals BLACK HOLE AS AN INFORMATION ERASER

2010 ◽  
Vol 25 (19) ◽  
pp. 1581-1594 ◽  
Author(s):  
HYEONG-CHAN KIM ◽  
JAE-WEON LEE ◽  
JUNGJAI LEE

We discuss the identity of black hole entropy and show that the first law of black hole thermodynamics, in the case of a Schwarzschild black hole, can be derived from Landauer's principle by assuming that the black hole is one of the most efficient information erasers. The term "most efficient" implies that maximal information will be erased for a given amount of work. We calculate the discrete mass spectra and the entropy of a Schwarzschild black hole assuming that the black hole processes information in unit of bits. The black hole entropy acquires a subleading contribution proportional to the logarithm of its mass-squared in addition to the usual mass-squared term without an artificial cutoff. We also argue that the minimum of the black hole mass is [Formula: see text]

Author(s):  
Grigory Volovik

The thermodynamics of black holes is discussed for the case, when the Newton constant G is not a constant, but is the thermodynamic variable. This gives for the first law of the Schwarzschild black hole thermodynamics: d S BH = − A d K + d M T BH , where the gravitational coupling K = 1 / 4 G , M is the black hole mass, A is the area of horizon, and T BH is Hawking temperature. From this first law it follows that the dimensionless quantity M 2 / K is the adiabatic invariant, which in principle can be quantized if to follow the Bekenstein conjecture. From the Euclidean action for the black hole it follows that K and A serve as dynamically conjugate variables. This allows us to calculate the quantum tunneling from the black hole to the white hole, and determine the temperature and entropy of the white hole.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 133
Author(s):  
Grigory Volovik

The thermodynamics of black holes is discussed for the case, when the Newton constant G is not a constant, but it is the thermodynamic variable. This gives for the first law of the Schwarzschild black hole thermodynamics: dSBH=−AdK+dMTBH, where the gravitational coupling K=1/4G, M is the black hole mass, A is the area of horizon, and TBH is Hawking temperature. From this first law, it follows that the dimensionless quantity M2/K is the adiabatic invariant, which, in principle, can be quantized if to follow the Bekenstein conjecture. From the Euclidean action for the black hole it follows that K and A serve as dynamically conjugate variables. Using the Painleve–Gullstrand metric, which in condensed matter is known as acoustic metric, we calculate the quantum tunneling from the black hole to the white hole. The obtained tunneling exponent suggests that the temperature and entropy of the white hole are negative.


2005 ◽  
Vol 20 (13) ◽  
pp. 2813-2820 ◽  
Author(s):  
AXEL KRAUSE

We study some consequences of a recently proposed description for a Schwarzschild black hole based on Euclidean [Formula: see text] brane pairs described in terms of chain-like excitations. A discrete mass-spectrum of Bekenstein-type is inferred and upon identification of the black hole mass with the chain's energy the leading corrections to both Hawking-temperature and specific heat of the black hole are obtained. The results indicate that for small black holes the evaporation process might be considerably altered.


1991 ◽  
Vol 06 (33) ◽  
pp. 3039-3045 ◽  
Author(s):  
JISHNU DEY ◽  
MIRA DEY ◽  
MARCELO SCHIFFER ◽  
LAURO TOMIO

The entropy bound from black hole thermodynamics can be invoked to set limits for temperatures at which hadrons can survive as a confined system. We find that this implies that the pion can be formed in heavy ion collisions, much later than heavier mesons, for example the ρ-meson, when the fireball is cooler. The temperature found in a simple model agree qualitatively with experiment. We also suggest that this may be the reason why in pion interferometry experiments the space-time volume of the pion source seems large.


2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
S. Jalalzadeh ◽  
F. Rodrigues da Silva ◽  
P. V. Moniz

AbstractThis paper investigates whether the framework of fractional quantum mechanics can broaden our perspective of black hole thermodynamics. Concretely, we employ a space-fractional derivative (Riesz in Acta Math 81:1, 1949) as our main tool. Moreover, we restrict our analysis to the case of a Schwarzschild configuration. From a subsequently modified Wheeler–DeWitt equation, we retrieve the corresponding expressions for specific observables. Namely, the black hole mass spectrum, M, its temperature T, and entropy, S. We find that these bear consequential alterations conveyed through a fractional parameter, $$\alpha $$ α . In particular, the standard results are recovered in the specific limit $$\alpha =2$$ α = 2 . Furthermore, we elaborate how generalizations of the entropy-area relation suggested by Tsallis and Cirto (Eur Phys J C 73:2487, 2013) and Barrow (Phys Lett B 808:135643, 2020) acquire a complementary interpretation in terms of a fractional point of view. A thorough discussion of our results is presented.


2012 ◽  
Vol 27 (39) ◽  
pp. 1250227 ◽  
Author(s):  
K. ZEYNALI ◽  
F. DARABI ◽  
H. MOTAVALLI

We study the black hole thermodynamics and obtain the correction terms for temperature, entropy, and heat capacity of the Schwarzschild black hole, resulting from the commutation relations in the framework of Modified Generalized Uncertainty Principle suggested by Doubly Special Relativity.


1996 ◽  
Vol 05 (05) ◽  
pp. 529-540 ◽  
Author(s):  
I.G. DYMNIKOVA

We analyze the globally regular solution of the Einstein equations describing a black hole whose singularity is replaced by the de Sitter core. The de Sitter—Schwarzschild black hole (SSBH) has two horizons. Inside of it there exists a particlelike structure hidden under the external horizon. The critical value of mass parameter M cr1 exists corresponding to the degenerate horizon. It represents the lower limit for a black-hole mass. Below M cr1 there is no black hole, and the de Sitter-Schwarzschild solution describes a recovered particlelike structure. We calculate the Hawking temperature of SSBH and show that specific heat is broken and changes its sign at the value of mass M cr 2>M cr 1 which means that a second-order phase transition occurs at that point. We show that the Hawking temperature drops to zero when a mass approaches the lower limit M cr1 .


Sign in / Sign up

Export Citation Format

Share Document