scholarly journals SELF-GRAVITATIONAL CORRECTIONS TO THE CARDY–VERLINDE FORMULA OF CHARGED BTZ BLACK HOLE

2011 ◽  
Vol 26 (14) ◽  
pp. 1047-1057 ◽  
Author(s):  
FARHAD DARABI ◽  
MUBASHER JAMIL ◽  
MOHAMMAD REZA SETARE

The entropy of the charged BTZ black hole horizon is described by the Cardy–Verlinde formula. We then compute the self-gravitational corrections to the Cardy–Verlinde formula of the charged BTZ black hole in the context of Keski-Vakkuri, Kraus and Wilczek (KKW) analysis. The self-gravitational corrections to the entropy as given by the Cardy–Verlinde formula are found to be positive. This result provides evidence in support of the claim that the holographic bound is not universal in the framework of two-dimensional gravity models.

2019 ◽  
Vol 34 (28) ◽  
pp. 1950168 ◽  
Author(s):  
M. Ashrafi

Using modular bootstrap we show the lightest primary fields of a unitary compact two-dimensional conformal field theory (with [Formula: see text], [Formula: see text]) has a conformal weight [Formula: see text]. This implies that the upper bound on the dimension of the lightest primary fields depends on their spin. In particular if the set of lightest primary fields includes extremal or near extremal states whose spin to dimension ratio [Formula: see text], the corresponding dimension is [Formula: see text]. From AdS/CFT correspondence, we obtain an upper bound on the spectrum of black hole in three-dimensional gravity. Our results show that if the first primary fields have large spin, the corresponding three-dimensional gravity has extremal or near extremal BTZ black hole.


2008 ◽  
Vol 23 (13) ◽  
pp. 2047-2053 ◽  
Author(s):  
M. R. SETARE

In this paper, we compute the corrections to the Cardy–Verlinde formula of four-dimensional Kerr black hole. These corrections are considered within the context of KKW analysis and arise as a result of the self-gravitational effect. Then we show that one can take into account the semiclassical corrections of the Cardy–Verlinde entropy formula by only redefining the Virasoro operator L0 and the central charge c.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050323
Author(s):  
Shubham Kala ◽  
Hemwati Nandan ◽  
Prateek Sharma

We present a detailed study of gravitational lensing around a rotating Bañados–Teitelboim–Zanelli (BTZ) black hole in (2 + 1)-dimensional gravity. The study of orbits for massless test particle around this BH spacetime is performed to describe the nature of cosmological constant in lower dimensions. We study the effect of cosmological constant on the photon orbit in view of other critical parameters. The bending angle of light is studied in view of different values of cosmological constant for direct and retrograde motion of test particles. It is being observed that the bending angle slightly decreases as the value of cosmological constant increases in the negative region.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jaydeep Kumar Basak ◽  
Debarshi Basu ◽  
Vinay Malvimat ◽  
Himanshu Parihar ◽  
Gautam Sengupta

We compute the entanglement negativity for various pure and mixed state configurations in a bath coupled to an evaporating two dimensional non-extremal Jackiw-Teitelboim (JT) black hole obtained through the partial dimensional reduction of a three dimensional BTZ black hole. Our results exactly reproduce the analogues of the Page curve for the entanglement negativity which were recently determined through diagrammatic technique developed in the context of random matrix theory.


1994 ◽  
Vol 09 (27) ◽  
pp. 4811-4835 ◽  
Author(s):  
TAKANORI FUJIWARA ◽  
YUJI IGARASHI ◽  
JISUKE KUBO

In two-dimensional dilaton gravity theories, there may exist a global Weyl invariance which makes the black hole spurious. If the global invariance and the local Weyl invariance of the matter coupling are intact at the quantum level, there is no Hawking radiation. We explicitly verify the absence of anomalies in these symmetries for the model proposed by Callan, Giddings, Harvey and Strominger. The crucial observation is that the conformal anomaly can be cohomologically trivial and so not truly anomalous in such dilaton gravity models.


1988 ◽  
Vol 03 (04) ◽  
pp. 333-343
Author(s):  
TAKESHI FUKUYAMA ◽  
KIYOSHI KAMIMURA

Dynamical time variables are studied in two dimensional gravity theory. Dynamical time and space variables exchange their role at the maximum radius (amax) like a black hole at event horizon. Dynamical arrows of time are directed towards amax in both expanding and contracting phases. Both time flows cannot go beyond amax, and the universe becomes static at amax.


2001 ◽  
Vol 16 (19) ◽  
pp. 1263-1268 ◽  
Author(s):  
DONAM YOUM

We show that the modified Cardy–Verlinde formula without the Casimir effect term is satisfied by asymptotically flat charged black holes in arbitrary dimensions. Thermodynamic quantities of the charged black holes are shown to satisfy the energy-temperature relation of a two-dimensional CFT, which supports the claim in our previous work (Phys. Rev.D61, 044013, hep-th/9910244) that thermodynamics of charged black holes in higher dimensions can be effectively described by two-dimensional theories. We also check the Cardy formula for the two-dimensional black hole compactified from a dilatonic charged black hole in higher dimensions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Juan Maldacena ◽  
Gustavo J. Turiaci ◽  
Zhenbin Yang

Abstract We study some aspects of the de Sitter version of Jackiw-Teitelboim gravity. Though we do not have propagating gravitons, we have a boundary mode when we compute observables with a fixed dilaton and metric at the boundary. We compute the no-boundary wavefunctions and probability measures to all orders in perturbation theory. We also discuss contributions from different topologies, borrowing recent results by Saad, Shenker and Stanford. We discuss how the boundary mode leads to gravitational corrections to cosmological observables when we add matter. Finally, starting from a four dimensional gravity theory with a positive cosmological constant, we consider a nearly extremal black hole and argue that some observables are dominated by the two dimensional nearly de Sitter gravity dynamics.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmed Almheiri ◽  
Raghu Mahajan ◽  
Jorge Santos

It has been suggested in recent work that the Page curve of Hawking radiation can be recovered using computations in semi-classical gravity provided one allows for ``islands" in the gravity region of quantum systems coupled to gravity. The explicit computations so far have been restricted to black holes in two-dimensional Jackiw-Teitelboim gravity. In this note, we numerically construct a five-dimensional asymptotically AdS geometry whose boundary realizes a four-dimensional Hartle-Hawking state on an eternal AdS black hole in equilibrium with a bath. We also numerically find two types of extremal surfaces: ones that correspond to having or not having an island. The version of the information paradox involving the eternal black hole exists in this setup, and it is avoided by the presence of islands. Thus, recent computations exhibiting islands in two-dimensional gravity generalize to higher dimensions as well.


Sign in / Sign up

Export Citation Format

Share Document