scholarly journals VANISHING DIMENSIONS: A REVIEW

2013 ◽  
Vol 28 (37) ◽  
pp. 1330034 ◽  
Author(s):  
DEJAN STOJKOVIC

We review a growing theoretical motivation and evidence that the number of dimensions actually reduces at high energies. This reduction can happen near the Planck scale, or much before, the dimensions that are reduced can be effective, spectral, topological or the usual dimensions, but many things point toward the fact that the high energy theories appear to propagate in a lower-dimensional space, rather than a higher-dimensional one. We will concentrate on a particular scenario of "vanishing" or "evolving dimensions" where the dimensions open up as we increase the length scale that we are probing, but will also mention related models that point to the same direction, i.e. the causal dynamical triangulation, asymptotic safety, as well as evidence coming from a noncommutative quantum theories, the Wheeler–DeWitt equation and phenomenon of "asymptotic silence". It is intriguing that experimental evidence for the high energy dimensional reduction may already exist — a statistically significant planar alignment of events with energies higher than TeV has been observed in high altitude cosmic ray experiments. A convincing evidence for dimensional reduction may be found in future in collider experiments and gravity waves observatories.

1996 ◽  
Vol 11 (13) ◽  
pp. 1037-1045 ◽  
Author(s):  
J.D. EDELSTEIN ◽  
C. NÚÑEZ ◽  
F.A. SCHAPOSNIK ◽  
J.J. GIAMBIAGI

We propose an alternative dimensional reduction prescription which in respect with Green functions corresponds to dropping the extra spatial coordinate. From this, we construct the dimensionally reduced Lagrangians both for scalars and fermions, discussing bosonization and supersymmetry in the particular two-dimensional case. We argue that our proposal is in some situations more physical in the sense that it maintains the form of the interactions between particles thus preserving the dynamics corresponding to the higher-dimensional space.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550106 ◽  
Author(s):  
Kazuharu Bamba ◽  
Davood Momeni ◽  
Ratbay Myrzakulov

We examine the Kaluza–Klein (KK) dimensional reduction from higher dimensional space-time and the properties of the resultant Bergmann–Wagoner general action of scalar–tensor theories. With the analysis of the perturbations, we also investigate the stability of the anti-de Sitter (AdS) space-time in the (D ∈ 𝒩)-dimensional Einstein gravity with the negative cosmological constant. Furthermore, we derive the conditions for the dimensional reduction to successfully be executed and present the KK compactification mechanism.


1997 ◽  
Vol 52 (1-2) ◽  
pp. 183-209 ◽  
Author(s):  
F. Winterberg

Abstract According to Newton, the ultimate building blocks of matter are hard frictionless spheres. This conjecture is here analyzed under different assumptions, which are: 1. The ultimate objects of matter are frictionless positive and negative Planck mass particles obeying nonrelativistic Newtonian mechanics.2. The Planck mass particles interact with the Planck force c 4 /G (c velocity of light, G Newton's constant) locally within a Planck length r p , with the positive Planck mass particles exerting a repulsive and the negative Planck mass particles an attractive force.3. Space if filled with an equal number of positive and negative Planck mass particles, whereby in the average each Planck length volume occupies one Planck mass particle.Making these three assumptions we derive:1. Nonrelativistic quantum mechanics as an approximation with departures from this approxima-tion suppressed by the Planck length.2. Lorentz invariance as a dynamic symmetry for energies small compared to the Plank energy.3. The operator field equation for the previously proposed Planck aether model of a unified theory of elementary particles.In contrast to theories in which the ultimate objects are strings at the Planck scale, the alternative theory proposed here does not need a higher dimensional space, but rather can be formulated in 3 + 1 dimensions.


2018 ◽  
Vol 33 (27) ◽  
pp. 1850157 ◽  
Author(s):  
Nobuchika Okada ◽  
Osamu Seto

The flux of high-energy cosmic-ray electrons plus positrons recently measured by the DArk Matter Particle Explorer (DAMPE) exhibits a tentative peak excess at an energy of around 1.4 TeV. In this paper, we consider the minimal gauged U(1)[Formula: see text] model with a right-handed neutrino (RHN) dark matter (DM) and interpret the DAMPE peak with a late-time decay of the RHN DM into [Formula: see text]. We find that a DM lifetime [Formula: see text] can fit the DAMPE peak with a DM mass [Formula: see text]. This favored lifetime is close to the current bound on it by Fermi-LAT, our decaying RHN DM can be tested, once the measurement of cosmic gamma ray flux is improved. The RHN DM communicates with the Standard Model particles through the U(1)[Formula: see text] gauge boson ([Formula: see text] boson), and its thermal relic abundance is controlled by only three free parameters: [Formula: see text], the U(1)[Formula: see text] gauge coupling [Formula: see text], and the [Formula: see text] boson mass [Formula: see text]. For [Formula: see text], the rest of the parameters are restricted to be [Formula: see text] and [Formula: see text], in order to reproduce the observed DM relic density and to avoid the Landau pole for running [Formula: see text] below the Planck scale. This allowed region will be tested by the search for a [Formula: see text] boson resonance at the future Large Hadron Collider.


2003 ◽  
Vol 18 (16) ◽  
pp. 1073-1097 ◽  
Author(s):  
Y. JACK NG

We review a few topics in Planck-scale physics, with emphasis on possible manifestations in relatively low energy. The selected topics include quantum fluctuations of spacetime, their cumulative effects, uncertainties in energy–momentum measurements, and low energy quantum-gravity phenomenology. The focus is on quantum-gravity-induced uncertainties in some observable quantities. We consider four possible ways to probe Planck-scale physics experimentally: (i) looking for energy-dependent spreads in the arrival time of photons of the same energy from GRBs; (ii) examining spacetime fluctuation-induced phase incoherence of light from extragalactic sources; (iii) detecting spacetime foam with laser-based interferometry techniques; (iv) understanding the threshold anomalies in high energy cosmic ray and gamma ray events. Some other experiments are briefly discussed. We show how some physics behind black holes, simple clocks, simple computers, and the holographic principle is related to Planck-scale physics. We also discuss a formulation of the Dirac equation as a difference equation on a discrete Planck-scale spacetime lattice, and a possible interplay between Planck-scale and Hubble-scale physics encoded in the cosmological constant (dark energy).


2015 ◽  
Vol 30 (12) ◽  
pp. 1550056 ◽  
Author(s):  
Yoshiharu Kawamura

We present a basic idea and a toy model that physical modes originate from unobservable fields. The model is defined on a higher-dimensional space–time and has fermionic symmetries that make fields unphysical, and observable modes can appear through a dimensional reduction.


Author(s):  
Nicholas Mee

Celestial Tapestry places mathematics within a vibrant cultural and historical context, highlighting links to the visual arts and design, and broader areas of artistic creativity. Threads are woven together telling of surprising influences that have passed between the arts and mathematics. The story involves many intriguing characters: Gaston Julia, who laid the foundations for fractals and computer art while recovering in hospital after suffering serious injury in the First World War; Charles Howard, Hinton who was imprisoned for bigamy but whose books had a huge influence on twentieth-century art; Michael Scott, the Scottish necromancer who was the dedicatee of Fibonacci’s Book of Calculation, the most important medieval book of mathematics; Richard of Wallingford, the pioneer clockmaker who suffered from leprosy and who never recovered from a lightning strike on his bedchamber; Alicia Stott Boole, the Victorian housewife who amazed mathematicians with her intuition for higher-dimensional space. The book includes more than 200 colour illustrations, puzzles to engage the reader, and many remarkable tales: the secret message in Hans Holbein’s The Ambassadors; the link between Viking runes, a Milanese banking dynasty, and modern sculpture; the connection between astrology, religion, and the Apocalypse; binary numbers and the I Ching. It also explains topics on the school mathematics curriculum: algorithms; arithmetic progressions; combinations and permutations; number sequences; the axiomatic method; geometrical proof; tessellations and polyhedra, as well as many essential topics for arts and humanities students: single-point perspective; fractals; computer art; the golden section; the higher-dimensional inspiration behind modern art.


2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Sign in / Sign up

Export Citation Format

Share Document