scholarly journals QUANTUM THEORY OF NON-ABELIAN DIFFERENTIAL FORMS AND LINK POLYNOMIALS

1994 ◽  
Vol 09 (07) ◽  
pp. 609-621
Author(s):  
BOGUSLAW BRODA

A topological quantum field theory of non-Abelian differential forms is investigated from the point of view of its possible applications to description of polynomial invariants of higher-dimensional two-component links. A path-integral representation of the partition function of the theory, which is a highly on-shell reducible system, is obtained in the framework of the antibracket-antifield formalism of Batalin and Vilkovisky. The quasi-monodromy matrix, giving rise to corresponding skein relations, is formally derived in a manifestly covariant non-perturbative manner.

1992 ◽  
Vol 06 (11n12) ◽  
pp. 2149-2157 ◽  
Author(s):  
A. YU. MOROZOV ◽  
ANTTI J. NIEMI ◽  
K. PALO

We argue that a generic supersymmetric theory can be characterized entirely in terms of loop space symplectic geometry, either in a loop space parametrized by the bosonic variables or in a superloop space parametrized by half of the bosonic and fermionic variables. A Poincare supersymmetric theory is a realization of our construction in terms of space-time variables that admit a natural Lorentz-invariant interpretation. Our approach opens a new, geometric point of view to a large number of problems, including the mechanism of supersymmetry breaking and the structure of topological quantum field theories.


1993 ◽  
Vol 08 (27) ◽  
pp. 2553-2563 ◽  
Author(s):  
S.N. SOLODUKHIN

We consider the topological theory of Witten type for gauge differential p-forms. It is shown that some topological invariants such as linking numbers appear under quantization of this theory. The non-Abelian generalization of the model is discussed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gustav Mogull ◽  
Jan Plefka ◽  
Jan Steinhoff

Abstract A precise link is derived between scalar-graviton S-matrix elements and expectation values of operators in a worldline quantum field theory (WQFT), both used to describe classical scattering of black holes. The link is formally provided by a worldline path integral representation of the graviton-dressed scalar propagator, which may be inserted into a traditional definition of the S-matrix in terms of time-ordered correlators. To calculate expectation values in the WQFT a new set of Feynman rules is introduced which treats the gravitational field hμν(x) and position $$ {x}_i^{\mu}\left({\tau}_i\right) $$ x i μ τ i of each black hole on equal footing. Using these both the 3PM three-body gravitational radiation 〈hμv(k)〉 and 2PM two-body deflection $$ \Delta {p}_i^{\mu } $$ Δ p i μ from classical black hole scattering events are obtained. The latter can also be obtained from the eikonal phase of a 2 → 2 scalar S-matrix, which we show corresponds to the free energy of the WQFT.


SPIN ◽  
2011 ◽  
Vol 01 (01) ◽  
pp. 33-44 ◽  
Author(s):  
SHUN-QING SHEN ◽  
WEN-YU SHAN ◽  
HAI-ZHOU LU

We present a general description of topological insulators from the point of view of Dirac equations. The Z2 index for the Dirac equation is always zero, and thus the Dirac equation is topologically trivial. After the quadratic term in momentum is introduced to correct the mass term m or the band gap of the Dirac equation, i.e., m → m − Bp2, the Z2 index is modified as 1 for mB > 0 and 0 for mB < 0. For a fixed B there exists a topological quantum phase transition from a topologically trivial system to a nontrivial system when the sign of mass m changes. A series of solutions near the boundary in the modified Dirac equation is obtained, which is characteristic of topological insulator. From the solutions of the bound states and the Z2 index we establish a relation between the Dirac equation and topological insulators.


2014 ◽  
Vol 29 (24) ◽  
pp. 1430025
Author(s):  
Alexey Sleptsov

We discuss relation between knot theory and topological quantum field theory. Also it is considered a theory of superpolynomial invariants of knots which generalizes all other known theories of knot invariants. We discuss a possible generalization of topological quantum field theory with the help of superpolynomial invariants.


1992 ◽  
Vol 07 (02) ◽  
pp. 209-234 ◽  
Author(s):  
J. GAMBOA

Topological quantum field theories and fractional statistics are both defined in multiply connected manifolds. We study the relationship between both theories in 2 + 1 dimensions and we show that, due to the multiply-connected character of the manifold, the propagator for any quantum (field) theory always contains a first order pole that can be identified with a physical excitation with fractional spin. The article starts by reviewing the definition of general covariance in the Hamiltonian formalism, the gauge-fixing problem and the quantization following the lines of Batalin, Fradkin and Vilkovisky. The BRST–BFV quantization is reviewed in order to understand the topological approach proposed here.


2021 ◽  
Vol 3 (1) ◽  
pp. 153-165
Author(s):  
Torsten Asselmeyer-Maluga

In this paper, we will present some ideas to use 3D topology for quantum computing. Topological quantum computing in the usual sense works with an encoding of information as knotted quantum states of topological phases of matter, thus being locked into topology to prevent decay. Today, the basic structure is a 2D system to realize anyons with braiding operations. From the topological point of view, we have to deal with surface topology. However, usual materials are 3D objects. Possible topologies for these objects can be more complex than surfaces. From the topological point of view, Thurston’s geometrization theorem gives the main description of 3-dimensional manifolds. Here, complements of knots do play a prominent role and are in principle the main parts to understand 3-manifold topology. For that purpose, we will construct a quantum system on the complements of a knot in the 3-sphere. The whole system depends strongly on the topology of this complement, which is determined by non-contractible, closed curves. Every curve gives a contribution to the quantum states by a phase (Berry phase). Therefore, the quantum states can be manipulated by using the knot group (fundamental group of the knot complement). The universality of these operations was already showed by M. Planat et al.


2007 ◽  
Vol 05 (01n02) ◽  
pp. 223-228 ◽  
Author(s):  
ANNALISA MARZUOLI ◽  
MARIO RASETTI

We resort to considerations based on topological quantum field theory to outline the development of a possible quantum algorithm for the evaluation of the permanent of a 0 - 1 matrix. Such an algorithm might represent a breakthrough for quantum computation, since computing the permanent is considered a "universal problem", namely, one among the hardest problems that a quantum computer can efficiently handle.


Sign in / Sign up

Export Citation Format

Share Document