scholarly journals ASYMPTOTIC SYMMETRY GROUPS OF LONG-RANGED GAUGE CONFIGURATIONS

1995 ◽  
Vol 10 (28) ◽  
pp. 2059-2070 ◽  
Author(s):  
DOMENICO GIULINI

We make some general remarks on long-ranged configurations in gauge or diffeomorphism invariant theories where the fields are allowed to assume some nonvanishing values at spatial infinity. In this case the Gauss constraint only eliminates those gauge degrees of freedom which lie in the connected component of asymptotically trivial gauge transformations. This implies that proper physical symmetries arise either from gauge transformations that reach to infinity or those that are asymptotically trivial but do not lie in the connected component of transformations within that class. The latter transformations form a discrete subgroup of all symmetries whose position in the ambient group has proven to have interesting implications. We explain this for the dyon configuration in the SO(3) Yang-Mills-Higgs theory, where we prove that the asymptotic symmetry group is Z|m|×ℝ where m is the monopole number. We also discuss the application of the general setting to general relativity and show that here the only implication of discrete symmetries for the continuous part is a possible extension of the rotation group SO(3) to SU(2).

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Arkadiusz Bochniak ◽  
Leszek Hadasz ◽  
Błażej Ruba

Abstract We construct a lattice model based on a crossed module of possibly non-abelian finite groups. It generalizes known topological quantum field theories, but in contrast to these models admits local physical excitations. Its degrees of freedom are defined on links and plaquettes, while gauge transformations are based on vertices and links of the underlying lattice. We specify the Hilbert space, define basic observables (including the Hamiltonian) and initiate a discussion on the model’s phase diagram. The constructed model reduces in appropriate limits to topological theories with symmetries described by groups and crossed modules, lattice Yang-Mills theory and 2-form electrodynamics. We conclude by reviewing classifying spaces of crossed modules, with an emphasis on the direct relation between their geometry and properties of gauge theories under consideration.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Oscar Fuentealba ◽  
Marc Henneaux ◽  
Sucheta Majumdar ◽  
Javier Matulich ◽  
Turmoli Neogi

Abstract We investigate the asymptotic structure of the free Rarita-Schwinger theory in four spacetime dimensions at spatial infinity in the Hamiltonian formalism. We impose boundary conditions for the spin-3/2 field that are invariant under an infinite-dimensional (abelian) algebra of non-trivial asymptotic fermionic symmetries. The compatibility of this set of boundary conditions with the invariance of the theory under Lorentz boosts requires the introduction of boundary degrees of freedom in the Hamiltonian action, along the lines of electromagnetism. These boundary degrees of freedom modify the symplectic structure by a surface contribution appearing in addition to the standard bulk piece. The Poincaré transformations have then well-defined (integrable, finite) canonical generators. Moreover, improper fermionic gauge symmetries, which are also well-defined canonical transformations, are further enlarged and turn out to be parametrized by two independent angle-dependent spinor functions at infinity, which lead to an infinite-dimensional fermionic algebra endowed with a central charge. We extend next the analysis to the supersymmetric spin-(1, 3/2) and spin-(2, 3/2) multiplets. First, we present the canonical realization of the super-Poincaré algebra on the spin-(1, 3/2) multiplet, which is shown to be consistently enhanced by the infinite-dimensional abelian algebra of angle-dependent bosonic and fermionic improper gauge symmetries associated with the electromagnetic and the Rarita-Schwinger fields, respectively. A similar analysis of the spin-(2, 3/2) multiplet is then carried out to obtain the canonical realization of the super-Poincaré algebra, consistently enhanced by the abelian improper bosonic gauge transformations of the spin-2 field (BMS supertranslations) and the abelian improper fermionic gauge transformations of the spin-3/2 field.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Robert de Mello Koch ◽  
Eunice Gandote ◽  
Augustine Larweh Mahu

Abstract Acting on operators with a bare dimension ∆ ∼ N2 the dilatation operator of U(N) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory defines a 2-local Hamiltonian acting on a graph. Degrees of freedom are associated with the vertices of the graph while edges correspond to terms in the Hamiltonian. The graph has p ∼ N vertices. Using this Hamiltonian, we study scrambling and equilibration in the large N Yang-Mills theory. We characterize the typical graph and thus the typical Hamiltonian. For the typical graph, the dynamics leads to scrambling in a time consistent with the fast scrambling conjecture. Further, the system exhibits a notion of equilibration with a relaxation time, at weak coupling, given by t ∼ $$ \frac{\rho }{\lambda } $$ ρ λ with λ the ’t Hooft coupling.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
M. Cvitan ◽  
P. Dominis Prester ◽  
S. Giaccari ◽  
M. Paulišić ◽  
I. Vuković

Abstract We analyze a novel approach to gauging rigid higher derivative (higher spin) symmetries of free relativistic actions defined on flat spacetime, building on the formalism originally developed by Bonora et al. and Bekaert et al. in their studies of linear coupling of matter fields to an infinite tower of higher spin fields. The off-shell definition is based on fields defined on a 2d-dimensional master space equipped with a symplectic structure, where the infinite dimensional Lie algebra of gauge transformations is given by the Moyal commutator. Using this algebra we construct well-defined weakly non-local actions, both in the gauge and the matter sector, by mimicking the Yang-Mills procedure. The theory allows for a description in terms of an infinite tower of higher spin spacetime fields only on-shell. Interestingly, Euclidean theory allows for such a description also off-shell. Owing to its formal similarity to non-commutative field theories, the formalism allows for the introduction of a covariant potential which plays the role of the generalised vielbein. This covariant formulation uncovers the existence of other phases and shows that the theory can be written in a matrix model form. The symmetries of the theory are analyzed and conserved currents are explicitly constructed. By studying the spin-2 sector we show that the emergent geometry is closely related to teleparallel geometry, in the sense that the induced linear connection is opposite to Weitzenböck’s.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a Lagrangian in trace dynamics at the Planck scale, for unification of gravitation, Yang–Mills fields, and fermions. Dynamical variables are described by odd-grade (fermionic) and even-grade (bosonic) Grassmann matrices. Evolution takes place in Connes time. At energies much lower than Planck scale, trace dynamics reduces to quantum field theory. In the present paper, we explain that the correct understanding of spin requires us to formulate the theory in 8-D octonionic space. The automorphisms of the octonion algebra, which belong to the smallest exceptional Lie group G2, replace space-time diffeomorphisms and internal gauge transformations, bringing them under a common unified fold. Building on earlier work by other researchers on division algebras, we propose the Lorentz-weak unification at the Planck scale, the symmetry group being the stabiliser group of the quaternions inside the octonions. This is one of the two maximal sub-groups of G2, the other one being SU(3), the element preserver group of octonions. This latter group, coupled with U(1)em, describes the electrocolour symmetry, as shown earlier by Furey. We predict a new massless spin one boson (the ‘Lorentz’ boson) which should be looked for in experiments. Our Lagrangian correctly describes three fermion generations, through three copies of the group G2, embedded in the exceptional Lie group F4. This is the unification group for the four fundamental interactions, and it also happens to be the automorphism group of the exceptional Jordan algebra. Gravitation is shown to be an emergent classical phenomenon. Although at the Planck scale, there is present a quantised version of the Lorentz symmetry, mediated by the Lorentz boson, we argue that at sub-Planck scales, the self-adjoint part of the octonionic trace dynamics bears a relationship with string theory in 11 dimensions.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3243-3255 ◽  
Author(s):  
GERARD 't HOOFT

Matter interacting classically with gravity in 3+1 dimensions usually gives rise to a continuum of degrees of freedom, so that, in any attempt to quantize the theory, ultraviolet divergences are nearly inevitable. Here, we investigate a theory that only displays a finite number of degrees of freedom in compact sections of space-time. In finite domains, one has only exact, analytic solutions. This is achieved by limiting ourselves to straight pieces of string, surrounded by locally flat sections of space-time. Next, we suggest replacing in the string holonomy group, the Lorentz group by a discrete subgroup, which turns space-time into a 4-dimensional crystal with defects.


2012 ◽  
Vol 27 (40) ◽  
pp. 1250233 ◽  
Author(s):  
ROSY TEH ◽  
BAN-LOONG NG ◽  
KHAI-MING WONG

We present finite energy SU(2) Yang–Mills–Higgs particles of one-half topological charge. The magnetic fields of these solutions at spatial infinity correspond to the magnetic field of a positive one-half magnetic monopole at the origin and a semi-infinite Dirac string on one-half of the z-axis carrying a magnetic flux of [Formula: see text] going into the origin. Hence the net magnetic charge is zero. The gauge potentials are singular along one-half of the z-axis, elsewhere they are regular.


1998 ◽  
Vol 5 (4) ◽  
pp. 219-240 ◽  
Author(s):  
V. Goncharov ◽  
V. Pavlov

Abstract. This paper presents developments of the Harniltonian Approach to problems of fluid dynamics, and also considers some specific applications of the general method to hydrodynamical models. Nonlinear gauge transformations are found to result in a reduction to a minimum number of degrees of freedom, i.e. the number of pairs of canonically conjugated variables used in a given hydrodynamical system. It is shown that any conservative hydrodynamic model with additional fields which are in involution may be always reduced to the canonical Hamiltonian system with three degrees of freedom only. These gauge transformations are associated with the law of helicity conservation. Constraints imposed on the corresponding Clebsch representation are determined for some particular cases, such as, for example. when fluid motions develop in the absence of helicity. For a long time the process of the introduction of canonical variables into hydrodynamics has remained more of an intuitive foresight than a logical finding. The special attention is allocated to the problem of the elaboration of the corresponding regular procedure. The Harniltonian Approach is applied to geophysical models including incompressible (3D and 2D) fluid motion models in curvilinear and lagrangian coordinates. The problems of the canonical description of the Rossby waves on a rotating sphere and of the evolution of a system consisting of N singular vortices are investigated.


Sign in / Sign up

Export Citation Format

Share Document