scholarly journals INFLATION IS PERHAPS THE GENERIC FEATURE OF PHANTOM FIELD, NOT THE BIG-RIP

2007 ◽  
Vol 22 (07) ◽  
pp. 1301-1315 ◽  
Author(s):  
ABHIK KUMAR SANYAL

A class of solutions for phantom field corresponding to a generalized k-essence Lagrangian has been presented, employing a simple method which provides the scope to explore many such. All the solutions having dynamical state parameter are found to touch the magic line w = -1 asymptotically. The solutions with constant equation of state can represent phantom, quitessence or an ordinary scalar field cosmologies depending on the choice of a couple of parameters of the theory. For w ≈ -1, quintessence and phantom models are indistinguishable through the Hubble parameter. Finally, it appears that inflation rather than big-rip is the generic feature of phantom cosmology.

2012 ◽  
Vol 21 (01) ◽  
pp. 1250002 ◽  
Author(s):  
L. N. GRANDA ◽  
E. LOAIZA

Late time cosmological solutions for scalar field model with kinetic and Gauss–Bonnet couplings are considered. The quintom scenario is realized with and without Big Rip singularity. We find that under specific choice of the Gauss–Bonnet coupling, the model considerably simplifies, giving rise to solutions where the kinetic term is proportional to the square of the Hubble parameter. This allows to reconstruct the model for a suitable cosmological evolution. We considered a solution that matches the observed behavior of the equation of state, while Big Rip singularity may be present or absent, depending on the parameters of the solution. Evolutionary scenarios known as Little Rip, have also been considered.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
M. Sharif ◽  
Aisha Siddiqa

This paper is devoted to study the cosmological behavior of homogeneous and isotropic universe model in the context of f(R,Tφ) gravity, where φ is the scalar field. For this purpose, we follow the first-order formalism defined by H=W(φ). We evaluate Hubble parameter, effective equation of state parameter (ωeff), deceleration parameter, and potential of scalar field for three different values of W(φ). We obtain phantom era in some cases for the early times. It is found that exponential expression of W(φ) yields ωeff independent of time for flat universe and independent of model parameter otherwise. It is concluded that our model corresponds to ΛCDM for both initial and late times.


2020 ◽  
Vol 17 (09) ◽  
pp. 2050139
Author(s):  
Abdulla Al Mamon

In this paper, we have investigated some cosmological consequences of a quintessence dark energy model. In particular, we have obtained the forms of the equation of state parameter, the deceleration parameter and the field potential by considering a simple relation between the scale factor and the time derivative of the scalar field, instead of assuming any functional form for the scalar field potential or the scale factor or the equation of state parameter. We have found that the model provides the desired early deceleration followed by present acceleration of the universe. The potential derived numerically in this work in the form [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are real constant parameters. It has also been found that our model mimics as the standard [Formula: see text]CDM model in future. Finally, we have also shown the evolution of the normalized Hubble parameter for our model and the [Formula: see text]CDM model and compared that with the latest Hubble parameter data.


2018 ◽  
Vol 27 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Nasim Saba ◽  
Mehrdad Farhoudi

By studying the chameleon model during inflation, we investigate whether it can be a successful inflationary model, wherein we employ the common typical potential usually used in the literature. Thus, in the context of the slow-roll approximations, we obtain the e-folding number for the model to verify the ability of resolving the problems of standard big bang cosmology. Meanwhile, we apply the constraints on the form of the chosen potential and also on the equation of state parameter coupled to the scalar field. However, the results of the present analysis show that there is not much chance of having the chameleonic inflation. Hence, we suggest that if through some mechanism the chameleon model can be reduced to the standard inflationary model, then it may cover the whole era of the universe from the inflation up to the late time.


2005 ◽  
Vol 14 (02) ◽  
pp. 355-362 ◽  
Author(s):  
H. Q. LU

Recent many physicists suggest that the dark energy in the universe might result from the Born–Infeld (B–I) type scalar field of string theory. The universe of B–I type scalar field with potential can undergo a phase of accelerating expansion. The corresponding equation of state parameter lies in the range of -1<ω<-⅓. The equation of state parameter of B–I type scalar field without potential lies in the range of 0≤ω≤1. We find that weak energy condition and strong energy condition are violated for phantom B–I type scalar field. The equation of state parameter lies in the range of ω<-1.


2020 ◽  
Vol 12 (4) ◽  
pp. 569-574
Author(s):  
C. Sivakumar ◽  
R. Francis

A slightly different power law-scaling fits to the picture of our 13.7 billion years old flat universe which is expanding presently at 67 km/s/Mpc with an acceleration. The model which is an attempt to retain power-law scaling in the light of the accepted facts about the universe we are living in, has a constant effective equation of state parameter as the cosmic fluid is a solution of matter, radiation and dark energy. It is successful in explaining the acceleration of universe which the normal power law fails if the present Hubble parameter is 67 km/s/Mpc and age of the universe is 13.7 billion years, and it is free from the defect of singularity.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Julien Grain ◽  
Vincent Vennin

AbstractContracting cosmologies are known to be flawed with a shear instability, where the contribution from the anisotropic stress to the overall energy density grows as $$a^{-6}$$ a - 6 , with a the scale factor. Classically, whether or not this contribution becomes important before the bounce depends on its initial value, which can always be sufficiently fine tuned to make it irrelevant. However, vacuum quantum fluctuations inevitably provide a non-vanishing source of anisotropic stress. In this work, we compute the minimum amount of shear that is obtained if one assumes that it vanishes initially, but lets quantum fluctuations build it up. In practice, we consider a massless test scalar field, and describe its quantum fluctuations by means of the stochastic “inflation” (though here applied to a contracting phase) formalism. We find that, if the equation-of-state parameter of the contraction satisfies $$w>-1/9$$ w > - 1 / 9 , regardless of when the contracting phase is initiated, the time at which the shear becomes sizeable is always when the Hubble scale approaches the Planck mass (which is also where the bounce is expected to take place). However, if $$w<-1/9$$ w < - 1 / 9 , the shear backreaction becomes important much earlier, at a point that depends on the overall amount of contraction.


2007 ◽  
Vol 16 (07) ◽  
pp. 1109-1117 ◽  
Author(s):  
Z. G. HUANG ◽  
H. Q. LU ◽  
W. FANG

In this paper, we regard the dilaton in Weyl-scaled induced gravitational theory as a coupled quintessence. Based on this consideration, we investigate the dilaton coupled quintessence (DCQ) model in the ω - ω′ plane, which is defined by the equation of state parameter for the dark energy and its derivative with respect to N (the logarithm of the scale factor a). We find the scalar field equation of motion in the ω - ω′ plane, and show mathematically the properties of attractor solutions which correspond to ωσ ~ -1, ωσ = 1. Finally, we find that our model is a tracking one which belongs to "freezing" type models classified in the ω - ω′ plane.


2016 ◽  
Vol 71 (10) ◽  
pp. 949-960
Author(s):  
Surajit Chattopadhyay ◽  
Antonio Pasqua ◽  
Irina Radinschi

AbstractThe present paper reports a study on accreting tachyon, Dirac-Born-Infeld essence and h-essence scalar field models of dark energy onto Morris-Thorne wormhole. Using three different parameterisation schemes and taking $H\, = \,{H_0}\, + \,{{{H_1}} \over t}$, we have derived the mass of the wormhole for all of the three parameterisation schemes that are able to get hold of both quintessence and phantom behaviour. With suitable choice of parameters, we observed that accreting scalar field dark energy models are increasing the mass of the wormhole in the phantom phase and the mass is decreasing in the quintessence phase. Finally, we have considered accretion with power law form of scale factor and without any parameterisation scheme for the equation of state parameter and observed the fact that phantom-type dark energy supports the existence of wormholes.


Sign in / Sign up

Export Citation Format

Share Document