scholarly journals ON EFFECTIVE F-THEORY ACTION IN TYPE IIA COMPACTIFICATIONS

2007 ◽  
Vol 22 (07) ◽  
pp. 1279-1300 ◽  
Author(s):  
IGOR KRIZ ◽  
HAO XING

Diaconescu, Moore and Witten proved that the partition function of type IIA string theory coincides (to the extent checked) with the partition function of M-theory. One of us (Kriz) and Sati proposed in a previous paper a refinement of the IIA partition function using elliptic cohomology and conjectured that it coincides with a partition function coming from F-theory. In this paper, we define the geometric term of the F-theoretical effective action on type IIA compactifications. In the special case when the first Pontrjagin class of space–time vanishes, we also prove a version of the Kriz–Sati conjecture by extending the arguments of Diaconescu–Moore–Witten. We also briefly discuss why even this special case allows interesting examples.

1999 ◽  
Vol 14 (26) ◽  
pp. 4121-4142 ◽  
Author(s):  
H. LÜ ◽  
S. MUKHERJI ◽  
C. N. POPE

We study the relationship between static p-brane solitons and cosmological solutions of string theory or M theory. We discuss two different ways in which extremal p-branes can be generalized to nonextremal ones, and show how wide classes of recently discussed cosmological models can be mapped into nonextremal p-brane solutions of one of these two kinds. We also extend previous discussions of cosmological solutions to include some that make use of cosmological-type terms in the effective action that can arise from the generalized dimensional reduction of string theory or M theory.


2005 ◽  
Vol 20 (07) ◽  
pp. 1481-1493
Author(s):  
J. KLUSOŇ

In this paper we propose the toy model of the closed string tachyon effective action that has marginal tachyon profile as its exact solution in case of constant or linear dilaton background. Then we will apply this model for description of two-dimensional bosonic string theory. We will find that the background configuration with the spatial dependent linear dilaton, flat space–time metric and marginal tachyon profile is the exact solution of our model even if we take into account backreaction of tachyon on dilaton and on metric.


2008 ◽  
Vol 23 (16n17) ◽  
pp. 2525-2540 ◽  
Author(s):  
SRIKUMAR SEN GUPTA

We obtain explicit time-dependent brane solutions in M-theory as well as in string theory by solving the reduced equations of motion (which follow, as in Int. J. Mod. Phys. A17, 4647 (2002), from 11-dimensional supergravity) for a class of brane solutions in curved backgrounds. The behavior of our solutions in both asymptotic and near-horizon limits are studied. It is shown that our time-dependent solutions serve as explicit examples of branes in singular, cosmological backgrounds. In some special cases the asymptotic and the boundary AdS solutions can be identified as Milne × Rn space–time.


2011 ◽  
Vol 26 (13) ◽  
pp. 2177-2197 ◽  
Author(s):  
HISHAM SATI

In this paper we revisit the subject of anomaly cancelation in string theory and M-theory on manifolds with string structure and give three observations. First, that on string manifolds there is no E8 × E8 global anomaly in heterotic string theory. Second, that the description of the anomaly in the phase of the M-theory partition function of Diaconescu–Moore–Witten extends from the spin case to the string case. Third, that the cubic refinement law of Diaconescu–Freed–Moore for the phase of the M-theory partition function extends to string manifolds. The analysis relies on extending from invariants which depend on the spin structure to invariants which instead depend on the string structure. Along the way, the one-loop term is refined via the Witten genus.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 75
Author(s):  
Richard Pincak ◽  
Alexander Pigazzini ◽  
Saeid Jafari ◽  
Cenap Ozel

The main purpose of this paper is to show and introduce some new interpretative aspects of the concept of “emergent space” as geometric/topological approach in the cosmological field. We will present some possible applications of this theory, among which the possibility of considering a non-orientable wormhole, but mainly we provide a topological interpretation, using this new approach, to M-Theory and String Theory in 10 dimensions. Further, we present some conclusions which this new interpretation suggests, and also some remarks considering a unifying approach between strings and dark matter. The approach shown in the paper considers that reality, as it appears to us, can be the “emerging” part of a more complex hidden structure. Pacs numbers: 11.25.Yb; 11.25.-w; 02.40.Ky; 02.40.-k; 04.50.-h; 95.35.+d.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


Sign in / Sign up

Export Citation Format

Share Document