Optical properties of rotating Hayward-de Sitter black hole surrounded by quintessence

2021 ◽  
pp. 2150048
Author(s):  
Yuan Chen ◽  
He-Xu Zhang ◽  
Tian-Chi Ma ◽  
Jian-Bo Deng

In this paper, we discussed optical properties of the nonlinear magnetic charged black hole surrounded by quintessence with a nonzero cosmological constant [Formula: see text]. Setting the state parameter [Formula: see text], we studied the horizons, the photon region and the shadow of this black hole. It turned out that for a fixed quintessential parameter [Formula: see text], in a certain range, with the increase of the rotation parameter [Formula: see text] and magnetic charge [Formula: see text], the inner horizon radius increases while the outer horizon radius decreases. The cosmological horizon [Formula: see text] decreases when [Formula: see text] or [Formula: see text] increases and it increases slightly when [Formula: see text] and [Formula: see text] increase. The shapes of photon region were then studied and depicted through graphical illustrations. Finally, we discussed the effects of the quintessential parameter [Formula: see text] and the cosmological constant [Formula: see text] on the shadow of this black hole with a fixed observer position in the domain of outer communication.

Author(s):  
Valeria Ramírez ◽  
L.A. López ◽  
Omar Pedraza ◽  
V.E. Ceron

In this paper, we study the scattering and absorption sections of the Schwarzschild--anti de Sitter black hole surrounded by quintessence. The critical values of the cosmological constant and the normalization factor are obtained. We describe the event horizons and the extremal condition of the black hole surrounded by quintessence. The effects of quintessence on the classical and semi--classical scattering cross--sections have been estimated. Also, the absorption section is studied with the sinc approximation in the eikonal limit. We consider the quintessence state parameter in the particular cases ω = -2/3 and ω = -1/2.


2010 ◽  
Vol 25 (08) ◽  
pp. 1571-1596 ◽  
Author(s):  
EDUARDO GUENDELMAN ◽  
ALEXANDER KAGANOVICH ◽  
EMIL NISSIMOV ◽  
SVETLANA PACHEVA

We consider self-consistent coupling of bulk Einstein–Maxwell–Kalb–Ramond system to codimension-one charged lightlikep-brane with dynamical (variable) tension (LL-brane). The latter is described by a manifestly reparametrization-invariant worldvolume action significantly different from the ordinary Nambu–Goto one. We show that the LL-brane is the appropriate gravitational and charge source in the Einstein–Maxwell–Kalb–Ramond equations of motion needed to generate a self-consistent solution describing nonsingular black hole. The latter consists of de Sitter interior region and exterior Reissner–Nordström region glued together along their common horizon (it is the inner horizon from the Reissner–Nordström side). The matching horizon is automatically occupied by the LL-brane as a result of its worldvolume Lagrangian dynamics, which dynamically generates the cosmological constant in the interior region and uniquely determines the mass and charge parameters of the exterior region. Using similar techniques we construct a self-consistent wormhole solution of Einstein–Maxwell system coupled to electrically neutral LL-brane, which describes two identical copies of a nonsingular black hole region being the exterior Reissner–Nordström region above the inner horizon, glued together along their common horizon (the inner Reissner–Nordström one) occupied by the LL-brane. The corresponding mass and charge parameters of the two black hole "universes" are explicitly determined by the dynamical LL-brane tension. This also provides an explicit example of Misner–Wheeler "charge without charge" phenomenon. Finally, this wormhole solution connecting two nonsingular black holes can be transformed into a special case of Kantowski–Sachs bouncing cosmology solution if instead of Reissner–Nordström we glue together two copies of the exterior Reissner–Nordström–de Sitter region with big enough bare cosmological constant, such that the radial coordinate becomes a timelike variable everywhere in the two "universes," except at the matching hypersurface occupied by the LL-brane.


2021 ◽  
Vol 36 (08n09) ◽  
pp. 2150057
Author(s):  
A. Belhaj ◽  
A. El Balali ◽  
W. El Hadri ◽  
Y. Hassouni ◽  
E. Torrente-Lujan

We study [Formula: see text]-dimensional black holes surrounded by dark energy (DE), embedded in [Formula: see text]-dimensional M-theory/superstring inspired models having [Formula: see text] space–time where [Formula: see text]. We focus first on the thermodynamical Hawking–Page phase transitions, whose microscopical origin is linked to [Formula: see text] coincident [Formula: see text]-branes supposed to live in such inspired models. Interpreting the cosmological constant as the number of colors, we compute various thermodynamical quantities in terms of the brane number, the entropy and the DE contribution. Calculating the ordinary chemical potential conjugated to the number of colors, we show that a generic black hole is more stable for a larger number of branes in lower dimensions. In the presence of DE, however, we find that the DE state parameter [Formula: see text] takes particular values, for [Formula: see text] models, providing nontrivial phase transitions. Then, we examine some optical properties. Concretely, we investigate shadow behaviors of quintessential black holes in terms of [Formula: see text]-brane physics. In terms of certain ratios, we find similar behaviors for critical quantities and shadow radius.


2021 ◽  
pp. 2150108
Author(s):  
Sen Guo ◽  
Ya Ling Huang ◽  
Ke Jiang He ◽  
Guo Ping Li

In this paper, we attempt to further study the heat engine efficiency for the regular black hole (BH) with an anti-de Sitter (AdS) background where the working material is the Hayward–AdS (HAdS) BH. In the extended phase space, we investigate the heat engine efficiency of the HAdS BH by defining the cosmological constant as the thermodynamic pressure P and deriving the mechanical work from the PdV terms. Then, we obtain the relation between the efficiency and the entropy/pressure and plot these function figures. Meanwhile, we compare the relation between the HAdS BH with that of the Bardeen–AdS (BAdS) BH, where it is found that the efficiency of the HAdS BH increases with increase in the magnetic charge q in contrast to that of the BAdS BH decrease with increase in the magnetic charge q. We found that the HAdS BH is more efficient than the BAdS BH, and guess that it is related to the BH structure.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944005
Author(s):  
Samir D. Mathur

The vacuum must contain virtual fluctuations of black hole microstates for each mass [Formula: see text]. We observe that the expected suppression for [Formula: see text] is counteracted by the large number [Formula: see text] of such states. From string theory, we learn that these microstates are extended objects that are resistant to compression. We argue that recognizing this ‘virtual extended compression-resistant’ component of the gravitational vacuum is crucial for understanding gravitational physics. Remarkably, such virtual excitations have no significant effect for observable systems like stars, but they resolve two important problems: (a) gravitational collapse is halted outside the horizon radius, removing the information paradox, (b) spacetime acquires a ‘stiffness’ against the curving effects of vacuum energy; this ameliorates the cosmological constant problem posed by the existence of a planck scale [Formula: see text].


Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 210
Author(s):  
Ismael Ayuso ◽  
Diego Sáez-Chillón Gómez

Extremal cosmological black holes are analysed in the framework of the most general second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon and the cosmological one coincide. Such metric is induced by a particular value of the effective cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.


2020 ◽  
Vol 29 (05) ◽  
pp. 2050032
Author(s):  
Shuang Yu ◽  
Changjun Gao

We construct exact black hole solutions to Einstein gravity with nonlinear electrodynamic field. In these solutions, there are, in general, four parameters. They are physical mass, electric charge, cosmological constant and the coupling constant. These solutions differ significantly from the Reissner–Nordström–de Sitter solution in Einstein–Maxwell gravity with a cosmological constant, due to the presence of coupling constant. For example, some of them are endowed with a topological defect on angle [Formula: see text] and the electric charge of some can be much larger or smaller than their mass by varying the coupling constant. On the other hand, these spacetimes are all asymptotically de Sitter (or anti-de Sitter). As a result, their causal structure is similar to the Reissner–Nordström–de Sitter spacetime. Finally, the investigations on the thermodynamics reveal that the coupling constant except for solution-4 has the opposite effect as temperature on the phase, structure of black holes. Concretely, the phase-space changes from single phase to three phases with the decrease of temperature. On the contrary, it changes from three phases to a single phase with the decrease of coupling constant.


2004 ◽  
Vol 13 (05) ◽  
pp. 885-898
Author(s):  
LI XIANG

Bekenstein argues that the horizon area of a black hole has a constant distance spectrum. We investigate the effects of such a discrete spectrum on the thermodynamics of a Schwarzchild black hole (SBH) and a Schwarzchild–de Sitter black hole (SdBH), in terms of the time-energy uncertainty relation and Stefan–Boltzman law. For the massive SBH, a negative and logarithmic correction to the Bekenstein–Hawking entropy is obtained, as well as other authors by using other methods. As to the minimal hole near the Planck scale, its entropy is no longer proportional to the horizon area, but is of order of the mass of the hole. This is similar to an excited stringy state. The vanishing heat capacity of such a minimal black hole implies that it may be a remnant as the ground state of the evaporating hole. The properties of a SdBH are similar to the SBH, except for an additional term of square area associated with the cosmological constant. In order to maintain the validity of the Bekenstein–Hawking formula, the cosmological constant is strongly limited by the size of the biggest black hole in the universe. A relation associated with the cosmological constant, Planck area and the Stefan–Boltzman constant is obtained. The cosmological constant is not only related to the vacuum energy, but is also related to the thermodynamics.


Open Physics ◽  
2007 ◽  
Vol 5 (4) ◽  
Author(s):  
Pavel Bakala ◽  
Petr Čermák ◽  
Stanislav Hledík ◽  
Zdeněk Stuchlík ◽  
Kamila Truparová

AbstractWe have developed a realistic, fully general relativistic computer code to simulate optical projection in a strong, spherically symmetric gravitational field. The standard theoretical analysis of optical projection for an observer in the vicinity of a Schwarzschild black hole is extended to black hole spacetimes with a repulsive cosmological constant, i.e, Schwarzschild-de Sitterspacetimes. Influence of the cosmological constant is investigated for static observers and observers radially free-falling from the static radius. Simulations include effects of the gravitational lensing, multiple images, Doppler and gravitational frequency shift, as well as the intensity amplification. The code generates images of the sky for the static observer and a movie simulations of the changing sky for the radially free-falling observer. Techniques of parallel programming are applied to get a high performance and a fast run of the BHC simulation code.


2012 ◽  
Vol 90 (9) ◽  
pp. 903-909 ◽  
Author(s):  
Muhammad Sharif ◽  
Wajiha Javed

We study Hawking radiation as a phenomenon of tunneling through event horizons of charged torus-like as well as dilaton black holes involving a cosmological constant based on Kerner and Mann’s formulation. We obtain tunneling probabilities as well as Hawking’s emission temperature of outgoing charged particles by applying the semiclassical Wentzel–Kramers–Brillouin approximation to the general covariant Dirac equation. The graphical behavior of Hawking temperature and horizon radius is investigated. We find results consistent with those already given in the literature.


Sign in / Sign up

Export Citation Format

Share Document