Ground state of the universe in quantum cosmology

2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641014 ◽  
Author(s):  
Natalia Gorobey ◽  
Alexander Lukyanenko

We find a physical state of a closed universe with the minimal excitation of the universe expansion energy in quantum gravity. It is an analog of the vacuum state of the ordinary quantum field theory in the Minkowsky space, but in our approach an energy of space of a closed universe together with the energy of its matter content are minimized. This ground state is chosen among an enlarged set of physical states, compared with the ordinary covariant quantum gravity. In our approach, physical states are determined by weak constraints: quantum mechanical averages of gravitational constraint operators equal zero. As a result, they appear to be non-static in such a modification of quantum gravity. Quantum dynamics of the universe is described by Schrödinger equation with a cosmic time determined by weak gravitational constraints. In order to obtain the observed megascopic universe with the inflation stage just after its quantum beginning, a lot of the energy in the form of the inflaton scalar field condensate is prescribed to the initial state. Parameters of the initial state for a homogeneous model of the universe are calculated.

2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040040
Author(s):  
N. Gorobey ◽  
A. Lukyanenko ◽  
A. Shavrin

The conditional principle of extremum in quantum cosmology is formulated for a positive functional of the energy density of space, in which gravitational constraints serve as additional conditions. The extremum conditions determine the discrete spectrum of the “stationary” state of the universe with the corresponding values of the energy density of space. A dynamic interpretation of solutions is proposed, in which the quantum number of the energy density plays the role of cosmic time. In the self-consistent harmonic approximation, the quantum dynamics of the anisotropic model of the Bianchi IX universe is considered.


1996 ◽  
Vol 11 (09) ◽  
pp. 755-762 ◽  
Author(s):  
ROBERTO AQUILANO ◽  
MARIO CASTAGNINO

The universe time asymmetry is essentially produced by its low-entropy unstable initial state. Using quantitative arguments P. Davies2 has demonstrated that the universe expansion may produce a decreasing of entropy and, therefore, this fact explains its low-entropy states. This idea is implemented in a qualitative way in a simple homogeneous model. A rough coincidence with observational data is found.


1991 ◽  
Vol 06 (20) ◽  
pp. 1863-1884 ◽  
Author(s):  
M. E. AGISHTEIN ◽  
A. A. MIGDAL

The dynamical triangulation model of 3-dimensional Quantum Gravity is defined and studied. We propose two different algorithms for numerical simulations, leading to consistent results. One is the 3-dimensional generalization of the bonds flip, another is more sophisticated algorithm, based on Schwinger–Dyson equations. We found such care necessary, because our results appear to be quite unexpected. We simulated up to 60000 tetrahedra and observed none of the feared pathologies like factorial growth of the partition function with volume, or collapse to the branched polymer phase. The volume of the Universe grows exponentially when the bare cosmological constant λ approaches the critical value λ c from above, but the closed Universe exists and has peculiar continuum limit. The Universe compressibility diverges as (λ − λ c )−2 and the bare Newton constant linearly approaches negative critical value as λ goes to λ c , provided the average curvature is kept at zero. The fractal properties turned out to be the same, as in two dimensions, namely the effective Hausdorff dimension grows logarithmically with the size of the test geodesic sphere.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter provides a few examples of representations of the universe on a large scale—a first step in constructing a cosmological model. It first discusses the Copernican principle, which is an approximation/hypothesis about the matter distribution in the observable universe. The chapter then turns to the cosmological principle—a hypothesis about the geometry of the Riemannian spacetime representing the universe, which is assumed to be foliated by 3-spaces labeled by a cosmic time t which are homogeneous and isotropic, that is, ‘maximally symmetric’. After a discussion on maximally symmetric space, this chapter considers spacetimes with homogenous and isotropic sections. Finally, this chapter discusses Milne and de Sitter spacetimes.


2012 ◽  
Vol 44 (1) ◽  
pp. 3-36 ◽  
Author(s):  
Helge Kragh

The standard model of modern cosmology is known as the hot big bang, a name that refers to the initial state of the universe some fourteen billion years ago. The name Big Bang introduced by Fred Hoyle in 1949 is one of the most successful scientific neologisms ever. How did the name originate and how was it received by physicists and astronomers in the period leading up to the hot big bang consensus model in the late 1960s? How did it reflect the meanings of the origin of the universe, a concept that predates the name by nearly two decades? Contrary to what is often assumed, the name was not an instant success—it took more than twenty years before Big Bang became a household word in the scientific community. When it happened, it was used with different connotations, as is still the case. Moreover, it was used earlier and more frequently in popular than in scientific contexts, and not always relating to cosmology. It turns out that Hoyle’s celebrated name has a richer and more surprising history than commonly assumed and also that the literature on modern cosmology and its history includes many common mistakes and errors. An etymological approach centering on the name Big Bang provides supplementary insight to the historical understanding of the emergence of modern cosmology.


2015 ◽  
Vol 17 (44) ◽  
pp. 29518-29530 ◽  
Author(s):  
Matthieu Sala ◽  
Stéphane Guérin ◽  
Fabien Gatti

We propose a new mechanism for the radiationless decay of photoexcited pyrazine to its ground electronic state involving a conical intersection between the dark Au(nπ) state and the ground state.


2015 ◽  
Vol 30 (09) ◽  
pp. 1550044 ◽  
Author(s):  
L. V. Laperashvili ◽  
H. B. Nielsen ◽  
A. Tureanu

We develop a self-consistent Spin (4, 4)-invariant model of the unification of gravity with weak SU(2) gauge and Higgs fields in the visible and invisible sectors of our universe. We consider a general case of the graviweak unification, including the higher-derivative super-renormalizable theory of gravity, which is a unitary, asymptotically-free and perturbatively consistent theory of the quantum gravity.


1989 ◽  
Vol 104 (4) ◽  
pp. 467-473
Author(s):  
Liu Liao ◽  
Fan Li ◽  
Huang Chao-guang

2015 ◽  
Vol 24 (10) ◽  
pp. 1550078 ◽  
Author(s):  
Mariam Bouhmadi-López ◽  
Ahmed Errahmani ◽  
Prado Martín-Moruno ◽  
Taoufik Ouali ◽  
Yaser Tavakoli

In this paper, we present a new cosmological event, which we named the little sibling of the big rip. This event is much smoother than the big rip singularity. When the little sibling of the big rip is reached, the Hubble rate and the scale factor blow up, but the cosmic derivative of the Hubble rate does not. This abrupt event takes place at an infinite cosmic time where the scalar curvature explodes. We show that a doomsday à la little sibling of the big rip is compatible with an accelerating universe, indeed at present it would mimic perfectly a ΛCDM scenario. It turns out that, even though the event seems to be harmless as it takes place in the infinite future, the bound structures in the universe would be unavoidably destroyed on a finite cosmic time from now. The model can be motivated by considering that the weak energy condition should not be strongly violated in our universe, and it could give us some hints about the status of recently formulated nonlinear energy conditions.


Sign in / Sign up

Export Citation Format

Share Document