VECTOR AND AXIAL-VECTOR BOUND STATES FROM A STRONGLY INTERACTING ELECTROWEAK SECTOR

1989 ◽  
Vol 04 (05) ◽  
pp. 1065-1110 ◽  
Author(s):  
R. CASALBUONI ◽  
S. DE CURTIS ◽  
D. DOMINICI ◽  
F. FERUGLIO ◽  
R. GATTO

The possibility that both vector and axial-vector bound states could originate from a strong interacting sector of the electroweak theory is considered. A simple Lagrangian parametrization is presented where the bound states are described as gauge vector bosons of a local, nonlinearly realized, SU (2) ⊗ SU (2) symmetry. At present the model is mostly constrained from data on W and Z masses and on neutrino-nucleon deep inelastic scattering. High energy e+e− tests are suggested where visible deviations from the standard model predictions could take place. These deviations exhibit a certain pattern which allows to distinguish the model from other theoretical frameworks. We find that precise measurements of W and Z masses and asymmetries in e+e− collisions could put strong restrictions on the parameters of the model if no appreciable deviations are found from the standard model, except for a case with the vector and axial-vector bosons degenerate in mass and coupling. General differences with respect to technicolor are pointed out.

1992 ◽  
Vol 07 (22) ◽  
pp. 5537-5548
Author(s):  
A.A. LIKHODED ◽  
A.A. PANKOV ◽  
O.P. YUSHCHENKO

The phenomenological manifestation of the additional Y(YL) boson arising in models with the composite structure of electroweak interactions is studied for the process [Formula: see text] at the TRISTAN energies [Formula: see text]. It is shown that the experimentally observed deviation of Rμ from the Standard Model predictions can be explained by the presence of the additional isoscalar Y boson in the region of a small mixing paramenter. The increase of statistics for the above processes at TRISTAN will permit one to set an additional limit on the model parameters.


2020 ◽  
Vol 35 (34n35) ◽  
pp. 2044010
Author(s):  
V. Ciulli

Recent results by the CMS experiment on Drell–Yan, W and multiboson events are presented, including in particular the measurement of the electroweak mixing angle, the differential distributions in Drell–Yan events, and the electroweak production of one and two vector bosons in association with two jets. No deviations from the Standard Model predictions are found and stringent bounds are set on anomalous triple and quartic gauge couplings.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark matter is conducted in final states containing a photon and missing transverse momentum in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV. The data, collected during 2015–2018 by the ATLAS experiment at the CERN LHC, correspond to an integrated luminosity of 139 fb−1. No deviations from the predictions of the Standard Model are observed and 95% confidence-level upper limits between 2.45 fb and 0.5 fb are set on the visible cross section for contributions from physics beyond the Standard Model, in different ranges of the missing transverse momentum. The results are interpreted as 95% confidence-level limits in models where weakly interacting dark-matter candidates are pair-produced via an s-channel axial-vector or vector mediator. Dark-matter candidates with masses up to 415 (580) GeV are excluded for axial-vector (vector) mediators, while the maximum excluded mass of the mediator is 1460 (1470) GeV. In addition, the results are expressed in terms of 95% confidence-level limits on the parameters of a model with an axion-like particle produced in association with a photon, and are used to constrain the coupling gaZγ of an axion-like particle to the electroweak gauge bosons.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Henning Bahl ◽  
Philip Bechtle ◽  
Sven Heinemeyer ◽  
Judith Katzy ◽  
Tobias Klingl ◽  
...  

Abstract The $$ \mathcal{CP} $$ CP structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $$ \mathcal{CP} $$ CP -nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $$ \mathcal{CP} $$ CP -odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $$ \mathcal{CP} $$ CP properties of this coupling with future LHC data by determining tH production rates independently from possible accompanying variations of the $$ t\overline{t}H $$ t t ¯ H rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for tH production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Upalaparna Banerjee ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman ◽  
Michael Spannowsky

Abstract It is not only conceivable but likely that the spectrum of physics beyond the Standard Model (SM) is non-degenerate. The lightest non-SM particle may reside close enough to the electroweak scale that it can be kinematically probed at high-energy experiments and on account of this, it must be included as an infrared (IR) degree of freedom (DOF) along with the SM ones. The rest of the non-SM particles are heavy enough to be directly experimentally inaccessible and can be integrated out. Now, to capture the effects of the complete theory, one must take into account the higher dimensional operators constituted of the SM DOFs and the minimal extension. This construction, BSMEFT, is in the same spirit as SMEFT but now with extra IR DOFs. Constructing a BSMEFT is in general the first step after establishing experimental evidence for a new particle. We have investigated three different scenarios where the SM is extended by additional (i) uncolored, (ii) colored particles, and (iii) abelian gauge symmetries. For each such scenario, we have included the most-anticipated and phenomenologically motivated models to demonstrate the concept of BSMEFT. In this paper, we have provided the full EFT Lagrangian for each such model up to mass dimension 6. We have also identified the CP, baryon (B), and lepton (L) number violating effective operators.


2003 ◽  
Vol 14 (09) ◽  
pp. 1273-1278 ◽  
Author(s):  
MICHAEL KLASEN

The Feynman diagram generator FeynArts and the computer algebra program FormCalc allow for an automatic computation of 2→2 and 2→3 scattering processes in High Energy Physics. We have extended this package by four new kinematical routines and adapted one existing routine in order to accomodate also two- and three-body decays of massive particles. This makes it possible to compute automatically two- and three-body particle decay widths and decay energy distributions as well as resonant particle production within the Standard Model and the Minimal Supersymmetric Standard Model at the tree- and loop-level. The use of the program is illustrated with three standard examples: [Formula: see text], [Formula: see text], and [Formula: see text].


1994 ◽  
Vol 09 (35) ◽  
pp. 3301-3312
Author(s):  
A. GURTU

High energy electroweak data, including the recent measurement of M top is analyzed within the basic framework of the standard model. While the experimentally measured value of [Formula: see text] implies a low value of M top , the rest of the data demands a much higher value. Estimates of M Higgs within the SM framework including and excluding this Rb measurement are given. Next this discrepancy is expressed in terms of a new parameter, [Formula: see text], the excess[Formula: see text] production compared to that expected from a SM fit. This parameter is determined to be (9.4 to 12.8) ± 5.0 MeV, implying an excess of over 10 000 [Formula: see text] events in each LEP experiment after the 1993 data is fully analyzed. The origin of these events could be non-minimal Higgs pair production which should be thoroughly searched for in the full data sample of ~2×106 events per LEP experiment. Unless this discrepancy eventually turns out to be a fluctuation one may be witnessing at LEP the advent of physics beyond the standard model.


Author(s):  
Ivan A. Shershan ◽  
Tatiana V. Shishkina

In this paper the analysis of W-boson production process in high-energy electron-photon collisions as a tool to search for deviations from the Standard Model is considered. In particular, a set of extended gauge models, including anomalous multi-boson interactions, are discussed as a promising way for «new physics» study. A numerical analysis of the total cross sections of the processes was carried out. The lowest order radiative corrections in the soft-photon approximation within the Standard Model are taken into account. Calculations beyond the Standard Model was performed, the kinematic features of the cross sections were identified. The restrictions on the anomalous triple gauge boson coupling constants were analyzed and the kinematic areas to the search for their manifestations were obtained during the experiments at the International Linear Collider. The paper shows that the search for «new physics» effects based on electron-photon collisions around the W-boson production peak is the maximal promising. It was also shown that future experiments at high luminosity linear colliders will significantly clarify the constraints on anomalous gauge coupling constants.


Sign in / Sign up

Export Citation Format

Share Document