EFFECT OF AGING AND CALCINATION ON MORPHOLOGY AND PROPERTIES OF SYNTHESIZED NANOCRYSTALLINE TiO2

2008 ◽  
Vol 22 (18n19) ◽  
pp. 3210-3215 ◽  
Author(s):  
H. ESLAMI NAMIN ◽  
H. HASHEMIPOUR ◽  
M. RANJBAR

Titanium dioxide nanoparticles were prepared by precipitation of aqueous TiCl 4 solution with ammonium hydroxide as precipitation agent. Freshly prepared Titania gel is allowed to crystallize under refluxing and stirring condition for 6 h over 90°C and oven dried over night in temperature above 100 C. X-ray diffraction studies on oven dried powder indicate formation of anatase phase TiO 2 with average crystalline size of 4.5 nm. Powders with variable amount of anatase and rutile phase were prepared by calcination of pure anatase in the temperature range 400-1000 c for 4 h. the XRD patterns show that phase transition from anatase to rutile occur in calcination above 600°C. The morphology and microstructure characteristics were obtained by XRD, TEM. and TGA.

2019 ◽  
Vol 56 ◽  
pp. 28-38 ◽  
Author(s):  
Uraiwan Werapun ◽  
Jaraslak Pechwang

TiO2 and iron-doped TiO2 were synthesized by sol-gel method. TiO2 and 0.5 %mol Fe:TiO2 were calcined at 500 and 800 °C for 3 h. The synthesized particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-VIS diffuse reflectance spectrophotometry (UV/DRS), scanning electron microscopy (SEM) and scanning electron microscope-energy dispersive X-Ray analysis (SEM-EDX). The XRD patterns of all samples that were calcined at 500 °C showed only anatase phase. On increasing temperature from 500 to 800 °C, the anatase phase transformed to rutile phase. For 0.5 %mol Fe:TiO2, pseudobrookite (Fe2TiO5) phase was observed at 800 °C. The particles that contained rutile showed higher antibacterial activities against E.coli, B. subtilis, and S. aureus than anatase phase, under fluorescent irradiation.


2017 ◽  
Vol 17 (1) ◽  
pp. 26
Author(s):  
Atik Setyani ◽  
Emas Agus Prastyo Wibowo

PENGARUH PELARUT TERHADAP KARAKTERISTIK NANOPARTIKEL TITANIUM DIOKSIDA (TiO2) ABSTRAK Tujuan penelitian ini adalah untuk membandingkan jenis pelarut dalam proses pembentukan nanopartikel titanium dioksida dengan metode sol gel. Hasil karakterisasi dengan X-Ray Diffraction (XRD) menunjukkan bahwa penggunaan pelarut berpengaruh terhadap kristalinitas dan fasa material yang terbentuk. Berdasarkan Joint Committee on Powder Diffraction Standards (JCPDS) card nomor 84-1286 menunjukkan difraktogram nano TiO2 hasil sintesis sebagian besar merupakan fasa anatas. Hal ini terlihat dari nilai 2 teta yang diperoleh yaitu 24,45˚; 47,29˚; 53,18˚; 61,64˚ untuk fasa anatas dan 54,65˚; 74,16˚ untuk fasa rutil. Hanya saja persentase fasa anatas pada nano TiO2 menggunakan pelarut metanol lebih besar jika dibandingkan dengan hasil nano TiO2 dengan pelarut etanol. Berdasarkan perhitungan ukuran partikel nano TiO2 menggunakan persamaan Debye- Scherer didapatkan ukuran nano TiO2 menggunakan metanol sebesar 13.78 nm sedangkan  nano TiO2 menggunakan etanol sebesar 34.26 nm. Kata Kunci: Pelarut, sol-gel, titanium dioksida   EFFECT OF SOLVENTS ON THE CHARACTERITICS OF NANOPARTICLES TITANIUM DIOXIDE (TiO2) ABSTRACTThe purpose of this study was to compare the type of solvent in the process of formation of titanium dioxide nanoparticles with sol gel method. X-Ray Diffraction (XRD) characterization results indicate that the use of solvent effect on crystallinity and phase material formed. Based Joint Committee on Powder Diffraction Standards (JCPDS) 84-1286 card numbers show diffractogram nano TiO2 synthesized largely a anatas phase. This can be seen from a value of 2 theta obtained by the 24,45˚; 47,29˚; 53,18˚; 61,64˚ to phase anatas and 54,65˚; 74,16˚ for rutile phase. Only a small percentage of the nano TiO2 anatase phase using methanol solvent is greater when compared with the results of nano TiO2 with ethanol. Based on the calculation of nano TiO2 particle size using equation Debye- Scherer obtained nanosized TiO2 using methanol amounted to 13.78 nm while the nano TiO2 using ethanol amounted to 34.26 nm. Keywords: Solvent, sol-gel, titanium dioxide


2012 ◽  
Vol 190-191 ◽  
pp. 534-538 ◽  
Author(s):  
Bin Xia Zhao ◽  
Li Ping Dang ◽  
Xiao Li Zhang ◽  
Na Yang ◽  
Yuan Yuan Sun

In order to obtain TiO2-pillared materials, montmorillonite (MMT) from Xinghe Co. of Neimeng as matrix, was used. The tetrabutyl titanate was used as precursor for the preparation of the TiO2-pillared montmorillonite, which was applied to introduce TiO2 into its interlayer space (15 mmol Ti/g clay). The as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR). The XRD patterns and the SEM photograph illustrated that the layers of MMT were delaminated and all samples were of the anatase phase. The TiO2-pillared montmorillonite was shown high photoactivity for the photodegradation of methyl orange dyestuff in aqueous solution under UV irradiation. The results showed that TiO2-pillared montmorillonite containing the anatase phase of TiO2 by calcination at 773 K and it was with the highest photocatalytic activity. Comparative photodegradation experiments were also conducted under different conditions. The experimental results demonstrated the feasibility of utilizing TiO2-pillared clays as a catalyst for removing methyl orange from water.


2018 ◽  
Vol 25 (1) ◽  
pp. 40-50
Author(s):  
Basma Abbas Abdulmajeed ◽  
Sameera Hamadullah ◽  
Fadhil Abed Allawi

Ethanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force microscopy was used to confirm the relation between the roughness and thickness with the pH level.  


2018 ◽  
Vol 930 ◽  
pp. 73-78
Author(s):  
Eduardo Felipe de Carli ◽  
Natali Amarante da Cruz ◽  
Hiana Muniz Garcia ◽  
Jusinei Meireles Stropa ◽  
Lis Regiane Vizolli Favarin ◽  
...  

Important changes in anatase crystal structure are responsible for the consequent anatase-to-rutile phase transition in titanium dioxide powders. In order to investigate several structural rearrangements occurring in anatase phase obtained by hydrolysis-based method such as Sol-Gel method the X-ray diffraction techniques followed by Rietveld method seems to better approach. Several alterations in anatase lattice parameters can occur by doping insertion and the investigation of isostructural zircon silicate can provide interesting ones. In the present paper, the monitoring of anatase structure reordering and the consequent anatase-to-rutile phase transition along the thermal treatment up to higher temperatures were monitored carrying out DSC and XRD characterizations. The insertion of 6 mol% of zircon silicate leads to the fully anatase stabilization up to 900 °C due the control of ordering process, even that a continuous increasing in anatase tetragonality is present during the entire process. We can conclude the reconstructive anatase-to-rutile phase transition is delayed to very higher temperatures can consequence of more stable cross-linked metal oxide bond in anatase phase.


1997 ◽  
Vol 12 (2) ◽  
pp. 439-443 ◽  
Author(s):  
R. Rodríguez-Talavera ◽  
S. Vargas ◽  
R. Arroyo-Murillo ◽  
R. Montiel-Campos ◽  
E. Haro-Poniatowski

Titania matrices prepared by a sol-gel technique were doped with several cations (La, Zn, Al, K, Na, Ca, Ba, and Co). The effect of the dopants on the thermal and structural properties of the materials is analyzed. The dopant concentration was 2% mol with respect to titanium, and in all cases the same anion (nitrate) was used. The transition temperatures from amorphous to anatase and from anatase to rutile were measured using x-ray diffraction. The amorphous-anatase transition is independent, for almost all samples, of the type of dopant used; however, the anatase-to-rutile phase transition depends strongly on the kind of cation. This means that the temperature range where the anatase phase exists can be controlled by choosing the appropriate dopant. We have found a correlation between the anatase-rutile phase transition temperature and the radius of the cations and their electric charge.


2014 ◽  
Vol 896 ◽  
pp. 481-484 ◽  
Author(s):  
Nafi'ah Ardhani ◽  
Agus Supriyanto ◽  
Akhmad Herman Yuwono ◽  
Risa Suryana

TiO2 nanoparticles have been successfully synthesized using the sol-gel method with main materials of titanium tetraisopropoxide (TTIP) and HClO4 solutions. Mass ratios (Rw) of aquadest and TTIP were 0.85, 2.00, and 3.50 which were going to be investigated in crystallization of TiO2 phases. Pre-heating was performed on TiO2 at 60°C for one day then it was annealed at 150°C for 3 hours. The DSSC structure was formed by using the synthesized-TiO2 as semiconductor material and beta-carotene as dye sensitizer. The x-ray diffraction (XRD) spectrum indicated that TiO2 peaks had anatase phases on crystal orientation of (101), (004), and (200) while TiO2 of rutile phase only appeared on orientation of (211). The highest intensity for all Rw was dominated by (101) anatase phase. From XRD spectrum data of (101) peak, the Scherrer’s method predicted that crystal size of TiO2 was 3.48 nm, 4.36 nm, and 4.47 nm for Rw of 0.85, 2.00, and 3.50, respectively. The Tauc’s method was applied on the UV-Vis data that predicted the bandgap energy (Eg) of TiO2 for Rw of 2.00 (Eg=3.14 eV) was higher than Rw of 0.85 (Eg=3.02 eV) and 3.50 (Eg=3.04 eV). The I-V characteristic calculation of DSSC structures were obtained that the efficiency optimum is 0.01% for Rw of 2.00. It is considered that bandgap energy value correlated to stability of Ti-OH bonds that caused the exited-electrons are easily injected to conduction band of TiO2. The performance of DSSC using the synthesized-TiO2 which consists of anatase and rutile can be improved about ten times compared to that using the pure-TiO2 rutile.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 59-63 ◽  
Author(s):  
MANORANJAN KAR ◽  
N. RAMA KRISHNAN ◽  
INDRAJIT TALUKDAR ◽  
K. ACHARYYA

Nanocrystalline TiO 2 sample was prepared by high-energy ball mill method. A known quantity of anatase phase- TiO 2 was milled for 83 h in air. The samples were collected at intervals of 5 h of milling. The XRD patterns were recorded for all the samples. The crystal structure changed from anatase phase for bulk material to rutile-rich phase for nanocrystalline material. Nanocrystalline TiO 2, which is a mixture of anatase, rutile, and srilankite phase, was prepared by milling for 60 h. The XRD pattern of unmilled anatase phase of TiO 2 could be refined with I41/amd space group. The crystallite size of the TiO 2 was found to decrease with milling time upto 50 h and then the size of rutile phase increases while the sizes of anatase and srilankite phases remain constant upto 60 h of milling. After 60 h, the sizes of all the phases remain constant. The average crystallite size for rutile phase is found to be 12 nm after 60 h of milling.


2013 ◽  
Vol 389 ◽  
pp. 53-56
Author(s):  
Shu Guo ◽  
Sheng Xu Lu ◽  
Hui Ding ◽  
Zai Feng Shi

The mesoporous TiO2 particles was conveniently prepared in a room temperature ionic liquid (RTILs) of 1, 3-di-(3-propionyloxy) imdazolium tetrafluoroborate [DiprCOOBF4 system. The obtained materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorptiondesorption analysis. XRD patterns revealed that only rutile phase is formed in the RTILs. The TEM micrographs as well as N2 adsorptiondesorption measurements show that the prepared products exhibited wormlike pore structures. The FTIR (Fourier Transform Infrared Spectra) demonstrate the carboxylate groups attach via bidentate or bridging coordination to the TiO2 surface.


2013 ◽  
Vol 800 ◽  
pp. 464-470 ◽  
Author(s):  
Wei Chao Liu ◽  
Huan Yan Xu ◽  
Tian Nuo Shi ◽  
Li Cheng Wu ◽  
Ping Li

TiO2/tourmaline composite photocatalyst was prepared by sol-gel method using tetrabutyl orthotitanate (Ti (OC4H9)4) as a precursor. As a comparison, pure TiO2 was prepared at the same experimental conditons without the addition of tourmaline. The obtained composite photocatalyst was characterized by X-Ray diffraction (XRD) and scanning electron microscope (SEM) and its photocatalytic activity was also investigated through the photodiscoloration of methyl orange (MO) under UV irradiation. The XRD results indicated that, in the composite photocatalyst, TiO2 existed in the form of anatase and rutile, with the sintering temperature and tourmaline content increasing, the anatase phase trended to the transformation to rutile phase. The SEM results revealed that the nanosized particles of TiO2 were well dispersed and immobilized on the surface of tourmaline, especially for the sample with 2% tourmaline content. Compared with pure TiO2, the composite photocatalyst exhibited a higher photocatalytic activity. When the pure TiO2 was used as the photocatalyst, the MO discoloration ratio only reached 55%. However, the MO discoloration ratio could approach 100% in presence of TiO2/tourmaline composit photocatalyst under the same conditions. The effects of tourmaline content and sintering temperature on the photocatalytic activity of the composite were studied in this work and the results suggested that the sample with 2% tourmaline content and sintered at the temperature of 550°C exhibited the best photocatalytic activity. Finally, the possible mechanism for the photodiscoloration of MO was put forward.


Sign in / Sign up

Export Citation Format

Share Document