scholarly journals Phonon residual resistance of pure crystals

2015 ◽  
Vol 29 (29) ◽  
pp. 1550206
Author(s):  
A. I. Agafonov

In this paper, using the Boltzmann transport equation, we study the zero temperature resistance of perfect metallic crystals of a finite thickness d along which a weak constant electric field E is applied. This resistance, hereinafter referred to as the phonon residual resistance, is caused by the inelastic scattering of electrons heated by the electric field, with emission of long-wave acoustic phonons and is proportional to [Formula: see text]. Consideration is carried out for Cu, Ag and Au perfect crystals with the thickness of about 1 cm, in the fields of the order of 1 mV/cm. Following the Matthiessen rule, the resistance of the pure crystals, the thicknesses of which are much larger than the electron mean free path is represented as the sum of both the impurity and phonon residual resistances. The condition on the thickness and field is found at which the low-temperature resistance of pure crystals does not depend on their purity and is determined by the phonon residual resistivity of the ideal crystals. The calculations are performed for Cu with a purity of at least 99.9999%.

2000 ◽  
Author(s):  
Taofang Zeng ◽  
Gang Chen

Abstract When electrons sweep through a double-heterojunction structure, there exist thermionic effects at the junctions and thermoelectric effects in the film. While both thermoelectric and thermionic effects have been studied for refrigeration and power generation applications separately, their interplay in heterostructures is not understood. This paper establishes a unified model including both thermionic and thermoelectric processes based on the Boltzmann transport equation for electrons, and the nonequilibrium interaction between electrons and phonons. Approximate solutions are obtained, leading to the electron temperature and Fermi level distributions inside heterostructures and discontinuities at the interfaces as a consequence of the highly nonequilibrium transport when the film thickness is much smaller than the electron mean free path. It is found that when the film thickness is smaller than the mean free path of electrons, the transport of electrons is controlled by thermionic emission. The coexistence of thermoelectric and thermionic effects may increase the power factor when the electron mean free path is comparable to the film thickness.


2002 ◽  
Vol 12 (02) ◽  
pp. 583-592 ◽  
Author(s):  
ROBERT A. SURIS ◽  
IVAN A. DMITRIEV

An analysis has been presented of electron localization in ideal 2D and 3D quantum dot superlattices (QDSL) in a homogeneous dc electric field and of Bloch oscillations in such structures. A very strong dependence of the ideal QDSL spectrum and wave functions on the field orientation is demonstrated. Bloch oscillations (BO) in QDSL are performed at two (or three for 3D QDSL) main Stark frequencies, which can be independently tuned by variation of field value and orientation. Due to the strong dependence of spectrum on field orientation, in QDSL intraminiband scattering processes can be almost totally suppressed. That allows to enlarge the BO lifetime by two orders of magnitude as compared with conventional quantum well superlattices.


Author(s):  
А.И. Грачев

AbstractThe rotation of a spherical particle in a constant electric field (an effect found earlier) has been analyzed. The particle is illuminated to induce the electric dipole moment of the sphere. The dynamics of the rotation effect has been considered in general terms to refine conditions for adiabatic rotation. The features of the particle’s nonadiabatic rotation have been demonstrated with a sphere placed in a medium with an infinitesimal viscosity. It has been shown that the nonadiabatic rotation dynamics to a great extent depends on a relationship between the electrical and photoinduced dipole moments of the sphere. The rotation dynamics of a particle with a slightly nonspherical shape has been briefly analyzed.


Author(s):  
A.N. Korshunova ◽  
V.D. Lakhno

In connection with the development of molecular nanobioelectronics, the main task of which is the construction of electronic devices based on biological molecules, the problems of charge transfer in such extended molecules as DNA are of increasing interest. The relevance of studying the charges motion in one-dimensional molecular chains is primarily associated with the possibility of using these chains as wires in nanoelectronic devices. Current carriers in one-dimensional chains are self-trapped electronic states, which have the form of polaron formations. In this paper we investigate the motion of the Holstein polaron in the process of its uniform motion along the chain in a constant electric field. It is known that during uniform motion along the chain in a weak electric field, the polaron experiences small oscillations of its shape. These oscillations are associated with the discreteness of the chain and are due to the presence of the Peierls-Nabarro potential in the discrete chain. Previous investigations have shown that for certain parameters of the chain, there is the possibility of uniform charge motion in a constant electric field over very large distances. The charge motion with a constant velocity is possible for small values of the electric field intensity. With an increase in the electric field intensity, the charge goes into an oscillatory regime of motion with Bloch oscillations. The calculations performed in this work showed that the elements of Bloch oscillations also appear during stationary motion of the polaron along the chain. Thus, it is shown that the Holstein polaron, uniformly moving along the chain in a constant electric field, experiences not only Peierls-Nabarro oscillations, but also low-amplitude oscillations with a Bloch period.


Sign in / Sign up

Export Citation Format

Share Document