scholarly journals Non-Hermitian interaction of a discrete state with a continuum

2017 ◽  
Vol 31 (31) ◽  
pp. 1750249
Author(s):  
Stefano Longhi

The interaction of a discrete state coupled to a continuum is a longstanding problem of major interest in different areas of quantum and classical physics. In Hermitian models, several dynamical decoupling schemes have been suggested, in which the discrete-continuum interaction can be substantially reduced and even suppressed. In this work, we consider a discrete state interacting with a continuum via a time-dependent non-Hermitian coupling with finite (albeit arbitrarily long) duration, and show rather generally that for a wide class of coupling temporal shapes, in which the real and imaginary parts of the coupling are related each other by a Hilbert transform, the discrete state returns to its initial condition after the interaction with the continuum, while the continuum keeps trace of the interaction. Such a behavior, which does not have any counterpart in Hermitian dynamics, can be referred to as non-Hermitian pseudo decoupling. Non-Hermitian pseudo decoupling is illustrated by considering a non-Hermitian extension of the Fano–Anderson model in a one-dimensional tight-binding lattice. Such a non-Hermitian model can describe, for example, photonic hopping dynamics in a tight-binding chain of optical microrings or resonators, in which non-Hermitian coupling can be realized by fast modulation of the real and imaginary (gain/loss) parts of the refractive index of the edge microring.

2020 ◽  
Vol 233 ◽  
pp. 05010
Author(s):  
João Pedro dos Santos Pires ◽  
Bruno Amorim ◽  
João Manuel Viana Parente Lopes

Using a method based on the time-evolution of the occupied states at zero temperature, we observe the onset of a quasi-uniform and quasisteady state current across a disordered tight-binding chain, coupled between two finite (but large) clean leads with open boundaries. This current is seen to match the one obtained in the Landauer-Büttiker formalism and is also independent of the initial condition considered (partitioned or non-partitioned). Finite-size effects are also reported and briefly discussed.


Author(s):  
Klaus Morawetz

The transport through a one-dimensional barrier is calculated within the tight-binding model. The surface Green’s functions are introduced as a method to invert the Green’s function matrix and to set-up convenient boundary conditions for simulations. The formalism is applied to calculate the transport properties of parallel stacked organic molecules. The extension to higher dimensions and multiband crystals is discussed. In this section we apply the GKB formalism to diffraction of electrons on a barrier. The system we study is a planar heterojunction of two ideal semi-infinite crystals or a surface of a crystal. As an initial condition we take a stream of electrons with a sharp momentum.


2017 ◽  
Vol 57 (6) ◽  
pp. 391 ◽  
Author(s):  
Francisco Marcelo Fernández ◽  
Javier Garcia

We draw attention on the fact that the Riccati-Padé method developed some time ago enables the accurate calculation of bound-state eigenvalues as well as of resonances embedded either in the continuum or in the discrete spectrum. We apply the approach to several one-dimensional models that exhibit different kind of spectra. In particular we test a WKB formula for the imaginary part of the resonance in the discrete spectrum of a three-well potential.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 443-452
Author(s):  
Tianshu Jiang ◽  
Anan Fang ◽  
Zhao-Qing Zhang ◽  
Che Ting Chan

AbstractIt has been shown recently that the backscattering of wave propagation in one-dimensional disordered media can be entirely suppressed for normal incidence by adding sample-specific gain and loss components to the medium. Here, we study the Anderson localization behaviors of electromagnetic waves in such gain-loss balanced random non-Hermitian systems when the waves are obliquely incident on the random media. We also study the case of normal incidence when the sample-specific gain-loss profile is slightly altered so that the Anderson localization occurs. Our results show that the Anderson localization in the non-Hermitian system behaves differently from random Hermitian systems in which the backscattering is suppressed.


AIP Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 015127
Author(s):  
Qiuyuan Chen ◽  
Jiawei Chang ◽  
Lin Ma ◽  
Chenghan Li ◽  
Liangfei Duan ◽  
...  

1984 ◽  
Vol 39 (9) ◽  
pp. 807-829
Author(s):  
Michael C. Böhm

The band structure of the metal-ligand-metal (M-L-M) bridged quasi one-dimensional (1D) cyclopentadienylmanganese polymer, MnCp 1, has been studied in the unoxidized state and in a partly oxidized modification with one electron removed from each second MnCp fragment. The tight-binding approach is based on a semiempirical self-consistent-field (SCF) Hartree-Fock (HF) crystal orbital (CO) model of the INDO-type (intermediate neglect of differential overlap) combined with a statistical averaging procedure which has its origin in the grand canonical ensemble. The latter approximation allows for an efficient investigation of violations of the translation symmetries in the oxidized 1D material. The oxidation process in 1 is both ligand- and metal-centered (Mn 3d-2 states). The mean-field minimum corresponds to a charge density wave (CDW) solution with inequivalent Mn sites within the employed repeat-units. The symmetry adapted solution with electronically identical 3d centers is a maximum in the variational space. The coupling of this electronic instability to geometrical deformations is also analyzed. The ligand amplitudes encountered in the hole-state wave function prevent extremely large charge separations between the 3d centers which are found in ID systems without bridging moieties (e.g. Ni(CN)2-5 chain). The symmetry reduction in oxidized 1 is compared with violations of spatial symmetries in finite transition metal derivatives and simple solids. The stabilization of the valence bond-type (VB) solution is physically rationalized (i.e. left-right correlations between the 3d centers). The computational results derived for 1 are generalized to oxidized transition metal chains with band occupancies that are simple fractions of the number of stacking units and to 1D systems that deviate from this relation. The entropy-influence for temperatures T ≠ 0 is shortly discussed (stabilization of domain or cluster structures).


2016 ◽  
Vol 22 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Xu Wang ◽  
Hui Fan

In the present analytical study, we consider the problem of a nanocrack with surface elasticity interacting with a screw dislocation. The surface elasticity is incorporated by using the continuum-based surface/interface model of Gurtin and Murdoch. By considering both distributed screw dislocations and line forces on the crack, we reduce the interaction problem to two decoupled first-order Cauchy singular integro-differential equations which can be numerically solved by the collocation method. The analysis indicates that if the dislocation is on the real axis where the crack is located, the stresses at the crack tips only exhibit the weak logarithmic singularity; if the dislocation is not on the real axis, however, the stresses exhibit both the weak logarithmic and the strong square-root singularities. Our result suggests that the surface effects of the crack will make the fracture more ductile. The criterion for the spontaneous generation of dislocations at the crack tip is proposed.


2016 ◽  
Vol 30 (25) ◽  
pp. 1650184 ◽  
Author(s):  
Moumita Dey ◽  
Santanu K. Maiti

In the present work, we propose that a one-dimensional quantum heterostructure composed of magnetic and non-magnetic (NM) atomic sites can be utilized as a spin filter for a wide range of applied bias voltage. A simple tight-binding framework is given to describe the conducting junction where the heterostructure is coupled to two semi-infinite one-dimensional NM electrodes. Based on transfer matrix method, all the calculations are performed numerically which describe two-terminal spin-dependent transmission probability along with junction current through the wire. Our detailed analysis may provide fundamental aspects of selective spin transport phenomena in one-dimensional heterostructures at nanoscale level.


Sign in / Sign up

Export Citation Format

Share Document