ELASTIC PROPERTIES OF STRAINED FCC AND HCP IRON

1993 ◽  
Vol 07 (01n03) ◽  
pp. 207-211
Author(s):  
T. KRAFT ◽  
M. METHFESSEL ◽  
M. VAN SCHILFGAARDE ◽  
M. SCHEFFLER

Using the full-potential linear muffin-tin orbital method within the local spin-density approximation we analyse the influence of the nearest neighbour distance on fcc(111) or hcp(0001) iron layers. The LDA-LSDA error in describing ferromagnetic phases is determined to be at least 15 mRy/atom. As a consequence of this error, our calculations favour paramagnetic ground states. In this sense, the reported results have some model character. However, our analysis of the elastic energy cost under distortions should hold for transition metals in general. Allowing relaxations of the interplanar distance the fcc phase can become energetically favourable over the hcp phase at large lattice mismatches. The main reason for this behaviour is the enhanced stiffness of the hcp interplanar bonds due to the shortening of the axial c/a ratio.

2014 ◽  
Vol 28 (13) ◽  
pp. 1450104 ◽  
Author(s):  
M. Sajjad ◽  
H. X. Zhang ◽  
N. A. Noor ◽  
S. M. Alay-e-Abbas ◽  
M. Abid ◽  
...  

In this study, we examine the structural, electronic, magnetic and bonding properties of zincblende phase Zn 1-x V x Te (x = 0.0625, 0.125, 0.25) compounds to present them as suitable candidates for spintronic applications. Density functional theory calculations have been used by implementing the accurate full-potential linear-augmented-planewave plus local-orbital method. Structural properties have been computed using Wu–Cohen generalized gradient approximation, whereas the modified Becke and Johnson local (spin) density approximation (mBJLDA) function has been employed for the evaluating ground state electronic properties and ferromagnetic behavior. The half-metallic (HM) ferromagnetism in Zn 1-x V x Te is analyzed in terms of V -3d states and it is shown that mBJLDA predicts wide HM gaps which promise the possibility of achieving V -doped ZnTe with high Curie temperature. The spin exchange splittings Δx(d) and Δx(pd) have been estimated and the contribution of conduction band (CB) and valence band (VB) in exchange splitting is calculated in terms of the exchange constants N0α and N0β. Furthermore, spin-polarized charge density calculation is presented for elucidating the bonding nature, while pressure dependence of total magnetic moment for three concentrations of V -doped ZnTe is also discussed.


2011 ◽  
Vol 1290 ◽  
Author(s):  
Atchara Punya ◽  
Tawinan Cheiwchanchamnangij ◽  
Alexander Thiess ◽  
Walter R. L. Lambrecht

ABSTRACTThe electronic structure of nitrogen vacancies in gadolinium nitride are studied using the full-potential linearized muffin-tin orbital method in the local spin density approximation with Hubbard U corrections (LSDA+U). The vacancy is found to have two localized defect levels in the gap, one of each spin. The third electron of each vacancy in the neutral state dopes the conduction band. The single positive state is found to be the ground state for Fermi levels located anywhere within the band gap. The vacancy has a net magnetic moment of 1 μB in the neutral charge state. The presence of the vacancy is found to increase the average exchange interactions between Gd atoms and hence the Curie temperature but only by about a factor 2 compared to GdN without vacancies.


2002 ◽  
Vol 718 ◽  
Author(s):  
Horng-Tay Jeng ◽  
G. Y. Guo

AbstractThe electronic and magnetic properties of half-metallic CrO2 have been studied by using the full-potential linearized muffin-tin orbital method within the local spin-density approximation (LSDA)+U approach. It is found that the orbital magnetic moment of Cr atom is quenched while O atom exhibit relatively significant orbital moment in CrO2. For the Hubbard U of 3 eV, LSDA+U gives the orbital moment of -0.051μB/atom for Cr and -0.0025μB/atom for O, being in good agreement with the experimental orbital moments of -0.05 for Cr and -0.003μB/atom for O, respectively. In contrast, LSDA gives the orbital moment of -0.037 for Cr and -0.0011 μB/atom for O, being too small as compared with the magnetic circular dichroism measurements. For the larger U considered in this work, both spin and orbital moments almost increase linearly with respect to U.


2011 ◽  
Vol 110-116 ◽  
pp. 492-496
Author(s):  
Chewa Thassana ◽  
Wicharn Techitdheera

This calculation focus on the effect of Coulomb interaction U and exchange interaction J on spin magnetic moment Msof MnO by using the local spin density approximation plus the Coulomb interaction (LSDA+U) method within full potential linear muffin-tin orbital (FP-LMTO). Our calculated results indicated that the spin magnetic moments correlated to U and J. The relevant results exhibited the increasing spin magnetic moments with increasing Coulomb interaction and exchange interaction. Furthermore, equation of spin magnetic moments, which good correspondence to the experimental data, were obtained and the relation of U and J parameter was defined.


2011 ◽  
Vol 1290 ◽  
Author(s):  
Tawinan Cheiwchanchamnangij ◽  
Atchara Punya ◽  
Walter R. L. Lambrecht

ABSTRACTElectronic structure calculations are reported for Gd in GaN on Ga as well as on N site and for pairs of Gd on neighboring Ga and N sites, using the full-potential linearized muffin-tin orbital method in the local spin density approximation with Hubbard U corrections (LSDA+U). The energy of formation for the N site is found to be much higher than for the Ga site even after relaxations are included. The GdN configuration is found to be at best metastable (in ZB). In WZ and in the pair configurations, the Gd is found to move toward an interstitial site leaving a nitrogen vacancy behind. The electronic structure of these structures and their magnetic moments are discussed.


2004 ◽  
Vol 9 (4) ◽  
pp. 363-372 ◽  
Author(s):  
T. Lukaszewicz ◽  
A. Ravinski ◽  
I. Makoed

A new multilayer electrochromic device has been constructed according to the following pattern: glass1/ITO/WO3/gel electrolyte/BP/ITO/glass2, where ITO is a transparent conducting film made of indium and tin oxide and with the surface resistance equal 8–10 Ω/cm2 . The electrochromic devices obtained in the research are characterized by great (considerable) transmittance variation between coloration and bleaching state (25–40% at applied voltage of 1.5 to 3 V), and also high coloration efficiency (above 100 cm2 /C). Selfconsistent energy bands, dielectric permittivity and optical parameters are calculated using a full-potential linear muffin-tin orbital method. The numerical solution of the Debye-Smoluchowski equations is developed for simulating recombination probability of Li+ ions in amorphous electrolyte.


Author(s):  
Shubha Dubey ◽  
Gitanjali Pagare ◽  
Ekta Jain ◽  
Sankar P. Sanyal

The structural properties and electronic properties of the intermetallic compound ErPb3 which crystallize in AuCu3 type structure (AB3) are studied by means of first principles total energy calculation using full potential linearized plane wave method (FP-LAPW) within the generalized gradient approximation of Perdew, Burke and Ernzrhof (PBE) and local spin density approximation (LSDA) for the exchange correlation functional and including spin magnetic calculation. The total energy is computed as a function of volume and fitted to the Birch-Murnaghan equation of state. The ground state properties of this compound such as equilibrium lattice parameter (a0), bulk modulus (B), and its pressure derivative (B’) are calculated and compared with the available experimental results. We find good agreement with the other theoretical and experimental results. For the compounds, the values of lattice constants obtained by PBE-GGA overestimates and by LSDA underestimates the available experimental values for the same, which verifies the reliability of the present calculation. The value obtained for the bulk modulus is 50.63 GPa. The analysis of electronic properties is achieved by the calculation of the band structures and the density of states in both the spin up and spin down modes, which show a metallic character of ErPB3 due to zero band gap. The values of calculated density of states are found to be 0.36 eV/states and 11.46 eV/states in spin-up and spin-down mode respectively. The calculated magnetic moment (μm) of ErPb3 is 2.06.


2011 ◽  
Vol 25 (10) ◽  
pp. 1393-1407 ◽  
Author(s):  
JING-HE WU ◽  
XIAN-LIN ZHAO ◽  
YOU-LIN SONG ◽  
GUO-DONG WU

The all-electron full-potential linearized muffin-tin orbital method, by means of quasi-harmonic Debye model, is applied to investigate the elastic constant and thermodynamic properties of body-centered-cubic tantalum (bcc Ta). The calculated elastic constants of bcc Ta at 0 K is consistent with the previous experimental and theoretical results. Our calculations give the correct trends for the pressure dependence of elastic constants. By using the convenient quasi-harmonic Debye model, we refined the thermal equations of state. The thermal expansivity and some other thermal properties agree well with the previous experimental and theoretical results.


1997 ◽  
Vol 492 ◽  
Author(s):  
Sukit Llmpijumnong ◽  
Walter R. L. Lambrecht

ABSTRACTThe energy differences between various SiC polytypes are calculated using the full-potential linear muffin-tin orbital method and analyzed in terms of the anisotropie next nearest neighbor interaction (ANNNI) model. The fact that J1 + 2J2 < 0 with J1 > 0 implies that twin boundaries in otherwise cubic material are favorable unless twins occur as nearest neighbor layers. Contrary to some other recent calculations we find J1 > |J2|. We discuss the consequences of this for stabilization of cubic SiC in epitaxial growth, including considerations of the island size effects.


Sign in / Sign up

Export Citation Format

Share Document