Experimental and Theoretical Study of the Field Induced Phase Separation in Electro- and Magnetorheological Suspensions

1999 ◽  
Vol 13 (14n16) ◽  
pp. 1791-1797 ◽  
Author(s):  
S. Cutillas ◽  
G. Bossis ◽  
E. Lemaire ◽  
A. Meunier ◽  
A. Cebers

We present here the study of field induced phase separation in E.R. and M.R. fluids. Two thermodynamic models — one for the formation of chais of particles and the other for phase separation are presented and compared with experimental results obtained with two kinds of suspensions. One was made of silica particles in silicone oil and the other was made of magnetic polystyrene particles in water. In the presence of a flow the phase separation occurs with the dense phase forming a regular pattern of stripes. The dependence of the period of these stripes on the intensity of the magnetic field is well reproduced by the same kind of thermodynamic model if we add the effect of normal stresses induced by the shear flow.

2019 ◽  
Vol 20 (17) ◽  
pp. 4201 ◽  
Author(s):  
Bica ◽  
Bunoiu

Hybrid magnetorheological elastomers (hMREs) were manufactured based on silicone rubber, silicone oil, carbonyl iron microparticles, graphene nanoparticles and cotton fabric. Using the hMREs, flat capacitors (FCs) were made. Using the installation described in this paper, the electrical capacitance and the coefficient of dielectric losses of the hMREs were measured as a function of the intensity of the magnetic field superimposed over an alternating electric field. From the data obtained, the electrical conductivity, the relative dielectric permittivity and magnetodielectric effects are determined. It is observed that the obtained quantities are significantly influenced by the intensity of the magnetic field and the amount of graphene used.


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2345-2351 ◽  
Author(s):  
A. CEBERS

The phase diagram of the magnetorheological suspension allowing for the modulated phases in the Hele-Shaw cell under the action of the normal field is calculated. The phase boundaries between the stripe, the hexagonal and the unmodulated phases in dependence on the layer thickness and the magnetic field strength are found. The existence of the transitions between the stripe and the hexagonal phases at the corresponding variation of the physical parameters is illustrated by the numerical simulation of the concentration dynamics in the Hele-Shaw cell. It is remarked that those transitions in the case of the magnetorheological suspensions can be caused by the compression or the expansion of the layer. Among the features noticed at the numerical simulation of the concentration dynamics in the Hele-Shaw cell are: the stripe patterns formed from the preexisting hexagonal structures are more ordered than arising from the initial randomly perturbed state; at the slightly perturbed boundary between the concentrated and diluted phases the hexagonal and the inverted hexagonal phases are formed and others.


2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


1993 ◽  
Vol 157 ◽  
pp. 415-419
Author(s):  
D. Breitschwerdt ◽  
H.J. Völk ◽  
V. Ptuskin ◽  
V. Zirakashvili

It is argued that the description of the magnetic field in halos of galaxies should take into account its dynamical coupling to the other major components of the interstellar medium, namely thermal plasma and cosmic rays (CR's). It is then inevitable to have some loss of gas and CR's (galactic wind) provided that there exist some “open” magnetic field lines, facilitating their escape, and a sufficient level of self-generated waves which couple the particles to the gas. We discuss qualitatively the topology of the magnetic field in the halo and show how galactic rotation and magnetic forces can be included in such an outflow picture.


1960 ◽  
Vol 15 (3) ◽  
pp. 220-226 ◽  
Author(s):  
Klaus Körper

Radial oscillations are excited in a homogeneous infinite plasma cylinder in a homogeneous axial magnetic field by a surface current which is homogeneous in the axial and azimuthal directions. The modes of oscillations corresponding to the axial and azimuthal components of current are not coupled, and so they may be analysed separately. The magnetic field in the plasma and vacuum is obtained, and the indices of refraction for both types of oscillations are discussed thoroughly. When the currents are parallel to the external magnetic field, the oscillations are characterized by the refractive index of Eccles. On the other hand, when the current is perpendicular to the magnetic field two resonance frequencies exist, which depend on the density of the plasma and the magnetic field strength. — In the latter case the radial characteristic oscillations of the plasma cylinder in an external magnetic field are considered.


1970 ◽  
Vol 25 (9) ◽  
pp. 1020-1023 ◽  
Author(s):  
Wolfram Thiemann ◽  
Erich Wagner

The influence of strong homogeneous magnetic fields in the range of 5000 to 8000 Gauss on the growth of Saccharomyces cerevisiae and Micrococcus denitrificans was studied. In the case of yeast growing under nearly anaerobic conditions an inhibition of growth rate was observed in the beginning of incubaton while some hours later the growth accelerated and surpassed the control. M. denitrificans on the other hand grew with the same rate as the controls during the first 2 - 3 hours of experiment; thereafter the magnetic field resulted in a significant acceleration of growth rate measured by a 5.8 to 13.3% increase of oxygen consumption after 5 - 6 hours run of experiment. Until now only inhibition of bacterial growths by magnetic fields is reported elsewhere in the literature.


1999 ◽  
Vol 61 (4) ◽  
pp. 623-631
Author(s):  
MANUEL NÚÑEZ

The configuration created in the plane by the separation of a magnetic hyperbolic null point into two critical points connected by a current sheet is considered. The main parameters are the orders of the zeros of these new null points, which determine the local topology of the magnetic field. It is shown that when the magnetic field is static, the fluid tends to flow orthogonally to the field in the vicinity of the sheet endpoints. Moreover, the Lorentz force pushes one of them towards the other, so the configuration tends to collapse again into a single null point except when the order of both is precisely ½.


Sign in / Sign up

Export Citation Format

Share Document