OPTICAL AND MORPHOLOGICAL CHARACTERIZATION OF (ZnO)x(CdO)1-x THIN FILMS

2001 ◽  
Vol 15 (17n19) ◽  
pp. 663-666
Author(s):  
L. VAILLANT ◽  
O. VIGIL ◽  
G. CONTRERAS-PUENTE ◽  
C. MEJÍA-GARCÍA

The optical and morphological properties of (ZnO)x(CdO)1-x semiconductor thin films with x composition in the range 0 □ x □ 0.5 are studied by the photoluminescence optical technique (PL), and the Scanning Electron Microscopy (SEM). The evolution of the band associated with oxygen content in the films is observed and described as a function of the film composition and the thermal annealing. The surface morphology is presented, where two different binary semiconducting species can be discerned in proportions dependent on the films composition.

2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


Author(s):  
Debbie G. Jones ◽  
Albert P. Pisano

A novel fabrication process is presented to create ultra thick ferromagnetic structures in silicon. The structures are fabricated by electroforming NiFe into silicon templates patterned with deep reactive ion etching (DRIE). Thin films are deposited into photoresist molds for characterization of an electroplating cell. Results show that electroplated films with a saturation magnetization above 1.6 tesla and compositions of approximately 50/50 NiFe can be obtained through agitation of the electrolyte. Scanning electron microscopy (SEM) images show that NiFe structures embedded in a 500 μm thick silicon wafer are realized and the roughening of the mold sidewalls during the DRIE aids in adhesion of the NiFe to the silicon.


2011 ◽  
Vol 183-185 ◽  
pp. 1837-1841
Author(s):  
Lei Sha ◽  
Yan Lai Wang ◽  
Shi Liang Ban

CuInSe2 thin films were obtained by selenization of the Cu-In precursors in the atmosphere of Se vapour, which were prepared on stainless steel and titanium substrates by electrodeposition. The films were characterized by XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The respective influences of composition, phases and surface morphology of Cu-In precursors on indium loss were investigated. The results indicate that the indium loss occurs in selenization process because of volatile In2Se arising. The indium loss is less in selenization process of Cu-In precursors contained CuIn, Cu2In and In phases.


2007 ◽  
Vol 546-549 ◽  
pp. 1699-1702
Author(s):  
Xi Ying Zhou ◽  
Liang He ◽  
Yan Hui Liu

Al-Cu-Fe quasicrystals powder was used to prepare the thin films on the surface of the A3 steel by the means of DMD-450 vacuum evaporation equipment. The thin films with different characterization were obtained through different parameters. The microstructures of the thin films were analyzed by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Additionally, the nano-hardness and the modulus of the films are tested by MTS and Neophot micro-hardness meter. The results showed that the modulus of the films was about 160GPa. Nano hardness of the films was about 7.5 Gpa. The films consisted of CuAl2, AlCu3. The thickness and the micro-hardness of the films are improved. In same way, with the increase of the electric current, the thickness and the hardness of the films are also improved. Along with increase of the time and the electric current, the wear behavior of the films was improved. To some extent, the microstructure of films contained the quasicrystal phase of Al65Cu20Fe15.


2019 ◽  
Vol 125 (3) ◽  
pp. 521-532
Author(s):  
Emma Sarath ◽  
Kazune Ezaki ◽  
Takenori Sasaki ◽  
Yu Maekawa ◽  
Yuji Sawada ◽  
...  

Abstract Background and aims Domatia are plant structures within which organisms reside. Callicarpa saccata (Lamiaceae) is the sole myrmecophyte, or ‘ant plant’, that develops foliar (leaf-borne) myrmeco-domatia in this genus. In this work we examined domatium development in C. saccata to understand the developmental processes behind pouch-like domatia. Methods Scanning electron microscopy, sectioning and microcomputed tomography were carried out to compare the leaves of C. saccata with those of the closely related but domatia-less myrmecophyte Callicarpa subaequalis, both under cultivation without ants. Key results Callicarpa saccata domatia are formed as a result of excess cell proliferation at the blade/petiole junctions of leaf primordia. Blade/petiole junctions are important meristematic sites in simple leaf organogenesis. We also found that the mesophyll tissue of domatia does not clearly differentiate into palisade and spongy layers. Conclusions Rather than curling of the leaf margins, a perturbation of the normal functioning of the blade/petiole junction results in the formation of domatium tissue. Excess cell proliferation warps the shape of the blade and disturbs the development of the proximal–distal axis. This process leads to the generation of distinct structures that facilitate interaction between C. saccata and ants.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 677-681 ◽  
Author(s):  
DN Podell ◽  
CH Packman ◽  
J Maniloff ◽  
GN Abraham

Abstract The morphology of the amorphous, gelatinous, and crystalline varieties of monoclonal IgG cryoglobulins was analyzed by light and transmission and scanning electron microscopy. Each cryoglobulin had a characteristic fine structure that correlated with its gross morphology. Transmission electron microscopy showed that the amorphous precipitates were random and disorganized molecular clumps. In contrast, cryogels were thin-walled, well-organized, and hydrated strawlike clusters, whereas cryocrystals formed tightly compacted, highly structured molecular clusters. Crystals that formed in blood produced rouleaux, and analysis by scanning electron microscopy indicated that the crystals could form thick-walled, branching, macromolecular nets that could physically trap cells. The morphological properties provided visual impressions by which cryoglobulins could cause clinical disease secondary to vascular occlusion produced by self- associated IgG cryoglobulin molecules.


2007 ◽  
Vol 997 ◽  
Author(s):  
Ashish Garg ◽  
Soumya Kar ◽  
Anju Dixit ◽  
D C Agrawal

AbstractIn this work, we report on the synthesis and characterization of thin films of (BiFeO3)1−x (PbTiO3)x (BFPT) solid solutions of compositions around morphotropic phase boundary (MPB) grown on platinized silicon (111) Pt/TiO2/SiO2/Si substrate by sol-gel based spin coating technique. The films were post-annealed at 700 and 750°C for 1 h in air. Morphological analysis of the films was carried out by scanning electron microscopy. Grazing incidence X-ray diffractometry revealed the perovskite structure of the films and peaks suggested the presence of rhombohedral structured pure BFPT phase in polycrystalline form. Scanning electron microscopy suggested that films annealed at 750degC had a denser microstructure as compared to those at 700°C. The room temperature dielectric constant of the films with composition of BF:PT :: 75:25 was measured to be ∼1200 at a frequency of 100 kHz.


Sign in / Sign up

Export Citation Format

Share Document