CATHODOLUMINESCENCE AND PHOTOLUMINESCENCE CHARACTERISTICS OF RUBY

2001 ◽  
Vol 15 (17n19) ◽  
pp. 760-763
Author(s):  
E. MARTINEZ SANCHEZ ◽  
M. GARCIA ◽  
F. RAMOS BRITO ◽  
O. ALVAREZ-FREGOSO ◽  
J. AZORIN ◽  
...  

The ruby samples were grown by the Czochralski technique. We used as starter materials Al 2 O 3 powder of 99.99% doped with 1% of Cr 2 O 3. The monocrystals obtained were clived to form samples of 5× 5× 2 mm3 size. The X-ray diffraction pattern shows a rhombohedral structure type. The elemental composition was determined by EDS. The samples were irradiated with a power from 0 to 15 KV to observe the different impurities levels of emission and the saturation power. The photoluminescence spectra showed two band at 697 and 772 nm, respectively.

Open Physics ◽  
2012 ◽  
Vol 10 (2) ◽  
Author(s):  
Anna Jasik ◽  
Marek Berkowski ◽  
Slawomir Kaczmarek ◽  
Andrzej Suchocki ◽  
Agata Kaminska ◽  
...  

AbstractSingle crystals of lithium-sodium-tetragermanate, a member of the solid solution series Li2−xNaxGe4O9 with x=0.28, pure and slightly doped with Cr3+ ions (0.03 mol.% and 0.1 mol.%), were grown in ambient atmosphere by the Czochralski technique from stoichiometric melt. The crystals with dimensions up to 20 mm in diameter and 50 mm in length were obtained. The crystal structure has been determined by means of X-ray diffraction. Phase analysis and structural refinement of the Li1.72Na0.28Ge4O9 crystals were performed by X-ray powder diffraction using Ni-filtered Cu Kα radiation with a Siemens D5000 diffractometer. The absorption, excitation and photoluminescence spectra of the crystals were measured in the UV-VIS and IR range at low temperatures. EPR investigations were performed using a conventional X-band Bruker ELEXSYS E 500 CW-spectrometer operating at 9.5 GHz with 100 kHz magnetic field modulation. Temperature and angular dependences of the EPR spectra of the crystal samples were recorded in the 3–300 K temperature range.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Author(s):  
Daniel C. Pease

A previous study demonstrated that tissue could be successfully infiltrated with 50% glutaraldehyde, and then subsequently polymerized with urea to create an embedment which retained cytomembrane lipids in sectioned material. As a result, the 180-190 Å periodicity characteristic of fresh, mammalian myelin was preserved in sections, as was a brilliant birefringence, and the capacity to bind OsO4 vapor in the hydrophobic bilayers. An associated (unpublished) study, carried out in co-operation with Drs. C.K. Akers and D.F. Parsons, demonstrated that the high concentration of glutaraldehyde (and urea) did not significantly alter the X-ray diffraction pattern of aldehyde-fixed, myelin. Thus, by itself, 50% glutaraldehyde has little effect upon cytomembrane systems and can be used with confidence for the first stages of dehydration.


Author(s):  
Chuxin Zhou ◽  
L. W. Hobbs

One of the major purposes in the present work is to study the high temperature sulfidation properties of Nb in severe sulfidizing environments. Kinetically, the sulfidation rate of Nb is satisfactorily slow, but the microstructures and non-stoichiometry of Nb1+αS2 challenge conventional oxidation/sulfidation theory and defect models of non-stoichiometric compounds. This challenge reflects our limited knowledge of the dependence of kinetics and atomic migration processes in solid state materials on their defect structures.Figure 1 shows a high resolution image of a platelet from the middle portion of the Nb1+αS2 scale. A thin lamellar heterogeneity (about 5nm) is observed. From X-ray diffraction results, we have shown that Nb1+αS2 scale is principally rhombohedral structure, but 2H-NbS2 can result locally due to stacking faults, because the only difference between these 2H and 3R phases is variation in the stacking sequence along the c axis. Following an ABC notation, we use capital letters A, B and C to represent the sulfur layer, and lower case letters a, b and c to refer to Nb layers. For example, the stacking sequence of 2H phase is AbACbCA, which is a ∼12Å period along the c axis; the stacking sequence of 3R phase is AbABcBCaCA to form an ∼18Å period along the c axis. Intergrowth of these two phases can take place at stacking faults or by a shear in the basal plane normal to the c axis.


2019 ◽  
Vol 15 ◽  
pp. 102605
Author(s):  
Ian Gregory Shuttleworth

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1023 ◽  
Author(s):  
Ashish Chhaganlal Gandhi ◽  
Chia-Liang Cheng ◽  
Sheng Yun Wu

We report the synthesis of room temperature (RT) stabilized γ–Bi2O3 nanoparticles (NPs) at the expense of metallic Bi NPs through annealing in an ambient atmosphere. RT stability of the metastable γ–Bi2O3 NPs is confirmed using synchrotron radiation powder X-ray diffraction and Raman spectroscopy. γ–Bi2O3 NPs exhibited a strong red-band emission peaking at ~701 nm, covering 81% integrated intensity of photoluminescence spectra. Our findings suggest that the RT stabilization and enhanced red-band emission of γ‒Bi2O3 is mediated by excess oxygen ion vacancies generated at the octahedral O(2) sites during the annealing process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. K. Eseev ◽  
A. A. Goshev ◽  
K. A. Makarova ◽  
D. N. Makarov

AbstractIt is well known that the scattering of ultrashort pulses (USPs) of an electromagnetic field in the X-ray frequency range can be used in diffraction analysis. When such USPs are scattered by various polyatomic objects, a diffraction pattern appears from which the structure of the object can be determined. Today, there is a technical possibility of creating powerful USP sources and the analysis of the scattering spectra of such pulses is a high-precision instrument for studying the structure of matter. As a rule, such scattering occurs at a frequency close to the carrier frequency of the incident USP. In this work, it is shown that for high-power USPs, where the magnetic component of USPs cannot be neglected, scattering at the second harmonic appears. The scattering of USPs by the second harmonic has a characteristic diffraction pattern which can be used to judge the structure of the scattering object; combining the scattering spectra at the first and second harmonics therefore greatly enhances the diffraction analysis of matter. Scattering spectra at the first and second harmonics are shown for various polyatomic objects: examples considered are 2D and 3D materials such as graphene, carbon nanotubes, and hybrid structures consisting of nanotubes. The theory developed in this work can be applied to various multivolume objects and is quite simple for X-ray structural analysis, because it is based on analytical expressions.


2020 ◽  
Vol 7 (21) ◽  
pp. 4197-4221 ◽  
Author(s):  
Francisco Colmenero ◽  
Jakub Plášil ◽  
Jiří Sejkora

The structure, hydrogen bonding, X-ray diffraction pattern and mechanical properties of six important uranyl carbonate minerals, roubaultite, fontanite, sharpite, widenmannite, grimselite and čejkaite, are determined using first principles methods.


1995 ◽  
Vol 80 (7-8) ◽  
pp. 869-872 ◽  
Author(s):  
George D. Guthrie ◽  
David L. Bish ◽  
Robert C. Reynolds

Sign in / Sign up

Export Citation Format

Share Document