SYNCHRONIZATION OF TAKAGI–SUGENO FUZZY STOCHASTIC DELAYED COMPLEX NETWORKS WITH HYBRID COUPLING

2009 ◽  
Vol 23 (20n21) ◽  
pp. 2429-2447 ◽  
Author(s):  
YANG TANG ◽  
JIAN-AN FANG

In this paper, we propose and investigate a general model of fuzzy complex networks described by the Takagi–Sugeno (T–S) fuzzy model with hybrid coupling and stochastic perturbation. The hybrid coupling includes constant coupling and discrete and distributed delay coupling. By utilizing a new Lyapunov functional form, we employ the stochastic analysis techniques and Kronecker product to develop delay-dependent synchronization criteria that ensure mean-square synchronization of the addressed T–S fuzzy delayed complex networks with stochastic disturbances. These sufficient conditions are computationally efficient, as it can be solved numerically by the LMI toolbox in Matlab. A numerical example is provided to demonstrate the effectiveness and the applicability of the proposed method.

2020 ◽  
Vol 2020 ◽  
pp. 1-27 ◽  
Author(s):  
M. Syed Ali ◽  
M. Usha ◽  
Quanxin Zhu ◽  
Saravanan Shanmugam

In this paper, we propose and explore the synchronization examination for fuzzy stochastic complex networks’ Markovian jumping parameters portrayed by Takagi-Sugeno (T-S) fuzzy model with mixed time-varying coupling delays via impulsive control. The hybrid coupling includes time-varying discrete and distributed delays. Based on appropriate Lyapunov–Krasovskii functional (LKF) approach, Newton–Leibniz formula, and Jensen’s inequality, the stochastic examination systems and Kronecker product to create delay-dependent synchronization criteria that guarantee stochastically synchronous of the proposed T-S fuzzy stochastic complex networks with mixed time-varying delays. Adequate conditions for the synchronization criteria for the frameworks are established in terms of linear matrix inequalities (LMIs). At long last, numerical examples and simulations are given to demonstrate the correctness of the hypothetical outcomes.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
M. Syed Ali ◽  
M. Usha ◽  
S. Saravanan ◽  
Quanxin Zhu

In this paper, we propose and study a global synchronization of delayed complex networks with hybrid coupling, which is composed of constant coupling, discrete-delay coupling, and unbounded distributed-delay coupling, and its actuator saturation control design is then further investigated. Several effective sufficient conditions of global synchronization are attained based on the Lyapunov function and a linear matrix inequality (LMI), which can be easily computed by the interior-point method. In addition, we established the control design of actuator saturation of the addressed stochastic delayed complex networks. More relaxed conditions by employing the new type of augmented matrices by using multitude Kronecker product terms can be handled, which can be introduced. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed synchronization scheme.


2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.


2014 ◽  
Vol 24 (4) ◽  
pp. 785-794 ◽  
Author(s):  
Wudhichai Assawinchaichote

Abstract This paper examines the problem of designing a robust H∞ fuzzy controller with D-stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust H∞ fuzzy controller that guarantees (i) the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value, and (ii) the closed-loop poles of each local system to be within a specified stability region. Sufficient conditions for the controller are given in terms of LMIs. Finally, to show the effectiveness of the designed approach, an example is provided to illustrate the use of the proposed methodology.


2011 ◽  
Vol 20 (08) ◽  
pp. 1571-1589 ◽  
Author(s):  
K. H. TSENG ◽  
J. S. H. TSAI ◽  
C. Y. LU

This paper deals with the problem of globally delay-dependent robust stabilization for Takagi–Sugeno (T–S) fuzzy neural network with time delays and uncertain parameters. The time delays comprise discrete and distributed interval time-varying delays and the uncertain parameters are norm-bounded. Based on Lyapunov–Krasovskii functional approach and linear matrix inequality technique, delay-dependent sufficient conditions are derived for ensuring the exponential stability for the closed-loop fuzzy control system. An important feature of the result is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using the proposed techniques for achieving delay dependence. Another feature of the results lies in that involves fewer matrix variables. Two illustrative examples are exploited in order to illustrate the effectiveness of the proposed design methods.


2007 ◽  
Vol 18 (07) ◽  
pp. 1095-1105 ◽  
Author(s):  
XINGWEN LIU ◽  
XIN GAO

Studied in this paper is the control problem of hyperchaotic systems. By combining Takagi–Sugeno (T–S) fuzzy model with parallel distributed compensation design technique, we propose a delay-dependent control criterion via pure delayed state feedback. Because the result is expressed in terms of linear matrix inequalities (LMIs), it is quite convenient to check in practice. Based on this criterion, a procedure is provided for designing fuzzy controller for such systems. This method is a universal one for controlling continuous hyperchaotic systems. As illustrated by its application to hyperchaotic Chen's system, the controller design is quite effective.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chengrong Xie ◽  
Yuhua Xu ◽  
Dongbing Tong

We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.


Author(s):  
Miloud Koumir ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

<p>This paper is concerned with the problem of model reduction design for continuous systems in Takagi-Sugeno fuzzy model. Through the defined FF H∞ gain performance, sufficient conditions are derived to design model reduction and to assure the fuzzy error system to be asymptotically stable with a FF H∞ gain performance index. The explicit conditions of fuzzy model reduction are developed by solving linear matrix inequalities. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.</p>


2012 ◽  
Vol 557-559 ◽  
pp. 2033-2038
Author(s):  
Jun Sheng Ren ◽  
Xian Ku Zhang

State estimation is an important topic in controller design. H∞filtering problem is discussed for fuzzy dynamical systems with time delays by using Takagi-Sugeno (T-S) model. Fuzzy H∞filter is obtained such that the filtering error system is stable and guarantees a prescribed estimation error level. Delay-dependent Lyapunov functional approach is employed to lower the conservativeness of the filter design. Therefore, the results of fuzzy H∞filter are delay-dependent. An example is given to illustrate the proposed results.


Author(s):  
R Vadivel ◽  
Sabarathinam Srinivasan ◽  
Yongbao Wu ◽  
NALLAPPAN GUNASEKARAN

The bifurcation, stability and stabilization analysis of permanent magnet synchronous motor (PMSM) systems are investigated in this paper. To begin, a new class of delay-dependent sufficient conditions is suggested with respect to the information of the membership function, a relevant Lyapunov-Krasovskii functional (LKF), and the overall information connected with the real sampling pattern, so that the fuzzy system is ensured to be stable with a weighted dissipativity efficiency. Second, sampled-data control is intended to stabilize the Takagi-Sugeno (T-S) fuzzy system with specified integral inequalities based on the obtained results. The required conditions are stated in terms of the feasibility of linear matrix inequalities (LMIs) under the dissipativity output index, and can readily be verified by MATLAB toolbox. Finally, verification examples are contributed to demonstrated the efficacy of the techniques established in this paper.


Sign in / Sign up

Export Citation Format

Share Document