COMMENSURABILITY EFFECTS ON DIFFUSION PROCESS IN STEPPED STRUCTURES

2011 ◽  
Vol 25 (21) ◽  
pp. 1749-1760 ◽  
Author(s):  
Y. LACHTIOUI ◽  
M. MAZROUI ◽  
Y. BOUGHALEB

This study deals with the investigation of diffusion process of one-dimensional system with steps for adsorbates interacting via the nearest-neighbor harmonic forces. The results are obtained from numerical studies, utilizing the method of stochastic Langevin dynamics. To study commensurability effects and the role of steps in the behavior of the diffusing particles, we have computed the diffusion coefficient for large concentrations and several interaction strengths. Our numerical results show that the diffusive behavior is reduced for commensurate structure case when the ground state has only one particle per one period of the substrate potential and enhanced for incommensurate density. Furthermore, the dynamic is qualitatively similar to that obtained in the case of no steps but with a clear reduction of the diffusion rate. Implications of these findings are discussed.

1975 ◽  
Vol 53 (6) ◽  
pp. 637-647 ◽  
Author(s):  
D. A. Pink ◽  
Vijay Sachdeva

We have investigated the two magnon localized states of a one dimensional Heisenberg ferromagnet the Hamiltonian of which is made up of nearest neighbor and next nearest neighbor isotropic bilinear and biquadratic exchange terms, and a single ion anisotropy term. We have restricted our choice of parameters so that the ground state at T = 0 is the fully aligned ferromagnetic state and we have used the thermodynamic Green functions where the averages have been evaluated in the ground state so that our results are good for [Formula: see text]. We have evaluated the probabilities of finding two spin deviations a distance n apart when the system is in a localized state described by total wave vector q. We have (a) compared the effects of ferromagnetic and antiferromagnetic next nearest neighbor exchange, (b) found that localized modes can lie below or above the two free magnon band depending upon the sign and magnitude of the biquadratic exchange, (c) found that in certain cases two spin deviations appear to behave like objects interacting only via a soft core, and (d) found that modes can have a large single ion component when the single ion anisotropy is zero.


2003 ◽  
Vol 14 (03) ◽  
pp. 257-265 ◽  
Author(s):  
MARCELO A. MONTEMURRO ◽  
FRANCISCO A. TAMARIT

In this work we study, by means of numerical simulations, the out-of-equilibrium dynamics of the one-dimensional Edwards–Anderson model with long-range interactions of the form ± Jr-α. In the limit α → 0 we recover the well known Sherrington–Kirkpatrick mean-field version of the model, which presents a very complex dynamical behavior. At the other extreme, for α → ∞ the model converges to the nearest-neighbor one-dimensional system. We focus our study on the dependence of the dynamics on the history of the sample (aging phenomena) for different values of α. The model is known to have mean-field exponents already for values of α = 2/3. Our results indicate that the crossover to the dynamic mean-field occurs at a value of α < 2/3.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Igor Medved’ ◽  
Robert Černý

The transport of salt, necessarily coupled with the transport of water, through porous building materials may heavily limit their durability due to possible deterioration and structural damage. Usually, the binding of salt to the pore walls is assumed to occur instantly, as soon as the salt is transported by water to a given position. We consider the advection-diffusion model of the transport and generalize it to include possible delays in the binding. Applying the Boltzmann-Matano method, we calculate the diffusion coefficient of the salt in dependence on the salt concentration and show that it increases with the rate of binding. We apply our results to an example of the chloride transport in a lime plaster.


COSMOS ◽  
2008 ◽  
Vol 04 (02) ◽  
pp. 131-140 ◽  
Author(s):  
AKIRA MIYAZAKI ◽  
TOSHIAKI ENOKI

The crystal structures and electronic and magnetic properties of conducting molecular magnets developed by our group are reviewed from the viewpoints of our two current strategies for increasing the efficiency of the π–d interaction. (EDTDM)2 FeBr 4 is composed of quasi-one-dimensional donor sheets sandwiched between magnetic anion sheets. The ground state of the donor layer changes from the insulator state to the metallic state by the application of pressure. When it is near to the insulator–metal phase boundary pressure, the magnetic order of the anion spins considerably affects the transport properties of the donor layer. The crystal structure of ( EDO – TTFBr 2)2 FeX 4 ( X = Cl , Br ) is characterized by strong intermolecular halogen–halogen contacts between the organic donor and FeX 4 anion molecules. The presence of the magnetic order of the Fe 3+ spins and relatively high magnetic order transition temperature proves the role of the halogen–halogen contacts as exchange interaction paths.


2011 ◽  
Vol 25 (01) ◽  
pp. 159-169 ◽  
Author(s):  
MANORANJAN KUMAR ◽  
SUJIT SARKAR ◽  
S. RAMASESHA

We use the Density Matrix Renormalization Group and the Abelian bosonization method to study the effect of density on quantum phases of one-dimensional extended Bose–Hubbard model. We predict the existence of supersolid phase and also other quantum phases for this system. We have analyzed the role of extended range interaction parameters on solitonic phase near half-filling. We discuss the effects of dimerization in nearest neighbor hopping and interaction as well as next nearest neighbor interaction on the plateau phase at half-filling.


1989 ◽  
Vol 03 (03) ◽  
pp. 427-439 ◽  
Author(s):  
N. M. BOGOLIUBOV ◽  
V. E. KOREPIN

The critical exponents describing the decrease of correlation functions on long distances for the one-dimensional Hubbard model is obtained. The behaviour of correlators shows that Cooper pairs of electrons are formed. The electron tunneling between the chains leads to the existence of the anomalous mean values and to the superconductive current. The anisotropy of the quasi-one-dimensional system leads to the rise of critical temperature T c .


2002 ◽  
Vol 80 (6) ◽  
pp. 645-660 ◽  
Author(s):  
M Blasone ◽  
P Jizba

We quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. By using the Feynman–Hibbs method, the time-dependent quantum states of such a system are constructed entirely in the framework of the classical theory. The geometric phase is calculated and found to be proportional to the ground-state energy of the one-dimensional linear harmonic oscillator to which the two-dimensional system reduces under appropriate constraint. PACS Nos.: 03.65Ta, 03.65Vf, 03.65Ca, 03.65Fd


Sign in / Sign up

Export Citation Format

Share Document