Transverse magnetic flow over a Reiner–Philippoff nanofluid by considering solar radiation

2019 ◽  
Vol 33 (36) ◽  
pp. 1950449 ◽  
Author(s):  
M. Gnaneswara Reddy ◽  
Sudha Rani ◽  
K. Ganesh Kumar ◽  
Asiful H. Seikh ◽  
Mohammad Rahimi-Gorji ◽  
...  

This paper reports the flow and heat transfer augmentation on Reiner–Philippoff nanofluid over stretching sheet. The effect of transverse magnetic field and thermal radiation are explored for temperature distributions. Transformations are used to reduce system of partial differential equations into ordinary ones and are solved numerically by using RKF-45 Method. Expressions for velocity and temperature profile are derived and plotted under the assumption of flow parameter. Influence of various parameters on surface drag force and heat transfer rates have been discussed with the help of tables and plots. It is noticed that the impact of pseudo plastic fluid, Newtonian fluid and dilatant fluid are highly contrasted in higher Ha. Furthermore, production of heat transfer is more in nonlinear radiation when compared to linear radiation.

2019 ◽  
Vol 65 (4 Jul-Aug) ◽  
pp. 373 ◽  
Author(s):  
K. Ganesh Kumar ◽  
S.A. Shehzad ◽  
T. Ambreen ◽  
And M.I. Anwar

This article executes MHD heat transport augmentation in aqueous based  nanoparticles fluid flow over convergent/divergent channel. Joule heating, magnetic field and Darcy-Forchheimer effects are explained for concentration and temperature distributions. Darcy-Forchheimer theory is utilized to explore the impact of porous medium. The system of partial differential expressions is transformed into ordinary ones and evaluated numerically by implementing RKF-45 scheme. Expressions for velocity and temperature profile are derived and plotted under the assumption of flow parameter. Influence of various parameters on heat transfer rates and surface drag force are discussed with the help of table and plots.


Author(s):  
Khaled J. Hammad

The impact of flow inertia on flow and heat transfer in suddenly expanding annular pipe flows of a shear-thinning non-Newtonian fluid is studied within the steady laminar flow regime. The equations governing conservation of mass, momentum, and energy, along with the power-law constitutive model are numerically solved using a finite-difference numerical scheme. The influence of inflow inertia, annular-nozzle-diameter-ratio, k, power-law index, n, and Prandtl numbers, is reported for: Re = {50, 100}, k = {0, 0.5}; n = {1, 0.6}; and Pr = {1, 10, 100}. Heat transfer augmentation, downstream the plane of expansion, is only observed for Pr = 10 and 100. The extent and intensity of recirculation in the corner region, increases with inflow inertia. Higher Reynolds and Prandtl numbers, power-law index values, and annular diameter ratios, in general, reflect a more dramatic heat transfer augmentation downstream of the expansion plane.


2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 120
Author(s):  
Panteleimon Bakalis ◽  
Polycarpos Papadopoulos ◽  
Panayiotis Vafeas

We studied the laminar fully developed ferrofluid flow and heat transfer phenomena of an otherwise magnetic fluid into a vertical annular duct of circular cross-section and uniform temperatures on walls which were subjected to a transverse external magnetic field. A computational algorithm was used, which coupled the continuity, momentum, energy, magnetization and Maxwell’s equations, accompanied by the appropriate conditions, using the continuity–vorticity–pressure (C.V.P.) method and a non-uniform grid. The results were obtained for different values of field strength and particles’ volumetric concentration, wherein the effects of the magnetic field on the ferrofluid flow and the temperature are revealed. It is shown that the axial velocity distribution is highly affected by the field strength and the volumetric concentration, the axial pressure gradient depends almost linearly on the field strength, while the heat transfer significantly increases due to the generated secondary flow.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 767-775 ◽  
Author(s):  
Djamel Sahel ◽  
Houari Ameur ◽  
Touhami Baki

The baffling technique is well-known for its efficiency in terms of enhancement of heat transfer rates throught channels. However, the baffles insert is accompanied by an increase in the friction factor. This issue remains a great challenge for the designers of heat exchangers. To overcome this issue, we suggest in the present paper a new design of baffles which is here called graded baffle-design. The baffles have an up- or down-graded height along the channel length. This geometry is characterized by two ratios: up-graded baffle ratio and down-graded baffle ratio which are varied from 0-0.08. For a range of Reynolds number varying from 104 to 2 ? 104, the turbulent flow and heat transfer characteristics of a heat exchanger channel are numerically studied by the computer code FLUENT. The obtained results revealed an enhancement in the thermohydraulic performance offered by the new suggested design. For the channel with a down-graded baffle ratio equal to 0.08, the friction factors decreased by 4-8%


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 93
Author(s):  
Kottakkaran Sooppy Nisar ◽  
Aftab Ahmed Faridi ◽  
Sohail Ahmad ◽  
Nargis Khan ◽  
Kashif Ali ◽  
...  

The mass and heat transfer magnetohydrodynamic (MHD) flows have a substantial use in heat exchangers, electromagnetic casting, X-rays, the cooling of nuclear reactors, mass transportation, magnetic drug treatment, energy systems, fiber coating, etc. The present work numerically explores the mass and heat transportation flow of MHD micropolar fluid with the consideration of a chemical reaction. The flow is taken between the walls of a permeable channel. The quasi-linearization technique is utilized to solve the complex dynamical coupled and nonlinear differential equations. The consequences of the preeminent parameters are portrayed via graphs and tables. A tabular and graphical comparison evidently reveals a correlation of our results with the existing ones. A strong deceleration is found in the concentration due to the effect of a chemical reaction. Furthermore, the impact of the magnetic field force is to devaluate the mass and heat transfer rates not only at the lower but at the upper channel walls, likewise.


2019 ◽  
Vol 9 (23) ◽  
pp. 5241 ◽  
Author(s):  
Ahmed M. Rashad ◽  
Waqar A. Khan ◽  
Saber M. M. EL-Kabeir ◽  
Amal M. A. EL-Hakiem

The micropolar nanofluids are the potential liquids that enhance the thermophysical features and ability of heat transportation instead of base liquids. Alumina and Titania nanoparticles are mixed in a micropolar fluid. The impact of convective boundary condition is also examined with assisting and opposing flows of both nanofluids. The main objective of this study is to investigate mixed convective flow and heat transfer of micropolar nanofluids across a cylinder in a saturated porous medium. Non-similar variables are used to make the governing equations dimensionless. The local similar and non-similar solutions are obtained by using the Runge-Kutta-Fehlberg method of seventh order. The impacts of various embedded variables on the flow and heat transfer of micropolar nanofluids are investigated and interpreted graphically. It is demonstrated that the skin friction and heat transfer rates depend on solid volume fraction of nanoparticles, Biot number, mixed convection, and material parameters.


Author(s):  
Khaled J. Hammad

Heat transfer enhancement in suddenly expanding annular pipe flows of a shear-thinning non-Newtonian fluid is studied within the steady laminar flow regime. Conservation of mass, momentum, and energy equations, along with the power-law constitutive model are numerically solved. The impact of inflow inertia, annular-nozzle-diameter-ratio, k, power-law index, n, and Prandtl numbers, is reported for: Re = {50, 100}, k = {0, 0.5, 0.7}; n = {1, 0.8, 0.6}; and Pr = {1, 10, 100}. Heat transfer enhancement downstream of the expansion plane, i.e., Nusselt numbers, Nu, higher than the fully developed value, in the downstream pipe, is observed only for Pr = 10 and 100. Higher Prandtl numbers, power-law index values, and annular diameter ratios, in general, reflect a more dramatic heat transfer augmentation downstream of the expansion plane. Heat transfer augmentation for Pr = 10 and 100, is more dramatic for suddenly expanding annular flows, in comparison with suddenly expanding pipe flow. For a given annular diameter ratio and Reynolds numbers, increasing the Prandtl number from Pr = 10 to Pr = 100, always results in higher peak Nu values, for both Newtonian and shear-thinning non-Newtonian flows.


Sign in / Sign up

Export Citation Format

Share Document