A dynamically tunable and wide-angle terahertz absorber based on graphene-dielectric grating

2020 ◽  
Vol 34 (27) ◽  
pp. 2050292
Author(s):  
Chunyan Wu ◽  
Yiqiang Fang ◽  
Linbao Luo ◽  
Kai Guo ◽  
Zhongyi Guo

We theoretically and numerically demonstrate a tunable and wide-angle terahertz absorber, which is composed of multilayer graphene-dielectric grating and bottom metal substrate. Numerical simulation shows that the proposed absorber has the advantage of dynamically tunable range from 1.015 THz to 1.165 THz when the chemical potential of graphene increases from 10 meV to 150 meV. The absorption efficiency can reach a high value of 99%. To show the working mechanism of absorption, the near field distributions of magnetic components are presented at the absorption wavelength. We also demonstrate that the tunable range of absorption can be engineered by designing the geometry parameters. In addition, it is shown that the designed absorber can maintain the good performance of absorption over a wide incident angle from [Formula: see text] to [Formula: see text] under TM-polarization.

2021 ◽  
Vol 2109 (1) ◽  
pp. 012015
Author(s):  
Yiran Guo ◽  
Yunping Qi ◽  
Chuqin Liu ◽  
Weiming Liu ◽  
Xiangxian Wang

Abstract Graphene, as a new nano-material, according to the physical properties of electric field localization and selective absorption on light of surface plasmon resonance (SPR), a tunable, multi-band and wide-angle perfect absorber based on crosshair-shaped graphene is devised by using the Finite Difference in Time Domain (FDTD) method. In this paper, the effects of chemical potential, relaxation time, and incident angle of light on the absorptivity of graphene are systematically discussed. The simulation experiment shows that there are two absorption peaks with perfect absorption rate appeared in the study range, and the maximum modulation index can be obtained by changing the relaxation time. Finally, it proves that the absorber is insensitive to wide-angle of light. Thus, it is able to be concluded that the absorber has a great reference value to sensor, wireless communication, biomedical and other fields.


2013 ◽  
Vol 718-720 ◽  
pp. 1792-1796
Author(s):  
Zhong Qun Li ◽  
Kai Xie ◽  
Ying Hao Ye ◽  
Rong Bin Guo ◽  
Xu Fei Wang

A non-contact testing method is proposed for encapsulation treated or insulation coated switching power supplies, which is implemented by reconstructing the pulse width modulation (PWM) signal of switching converters from the near field radiation of magnetic components. The radiation pattern of a buck converter is investigated, and the magnetic field sensing probe and PWM signal reconstruction circuit are also illustrated. The reconstruction testing is carried out on a buck converter; the duty cycle error of the reconstructed PWM signal is less than 0.2%, which validates the proposed method.


Author(s):  
Yizhao Guan ◽  
Hiromasa Kume ◽  
Shotaro Kadoya ◽  
Masaki Michihata ◽  
Satoru Takahashi

Abstract Microstructures are widely used in the manufacture of functional surfaces. An optical-based super-resolution, non-invasive method is preferred for the inspection of surfaces with massive microstructures. The Structured Illumination Microscopy (SIM) uses standing-wave illumination to reach optical super-resolution. Recently, coherent SIM is being studied. It can obtain not only the super-resolved intensity distribution but also the phase and amplitude distribution of the sample surface beyond the diffraction limit. By analysis of the phase-depth dependency, the depth measurement for microgroove structures with coherent SIM is expected. FDTD analysis is applied for observing the near-field response of microgroove under the standing-wave illumination. The near-field phase shows depth dependency in this analysis. Moreover, the effects from microgroove width, the incident angle, and the relative position between the standing-wave peak and center of the microgroove are investigated. It is found the near-field phase change can measure depth until 200 nm (aspect ratio 1) with an error of up to 20.4 nm in the case that the microgroove width is smaller than half of the wavelength.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2042 ◽  
Author(s):  
Hanqing Liu ◽  
Jianfeng Tan ◽  
Peiguo Liu ◽  
Li-an Bian ◽  
Song Zha

We achieve the effective modulation of coupled-resonator-induced transparency (CRIT) in a photonic crystal system which consists of photonic crystal waveguide (PCW), defect cavities, and a multilayer graphene-insulator stack (MGIS). Simulation results show that the wavelength of transparency window can be effectively tuned through varying the chemical potential of graphene in MGIS. The peak value of the CRIT effect is closely related to the structural parameters of our proposed system. Tunable Multipeak CRIT is also realized in the four-resonator-coupled photonic crystal system by modulating the chemical potentials of MGISs in different cavity units. This system paves a novel way toward multichannel-selective filters, optical sensors, and nonlinear devices.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhandong Huang ◽  
Shengdong Zhao ◽  
Yiyuan Zhang ◽  
Zheren Cai ◽  
Zheng Li ◽  
...  

Efficient acoustic communication across the water-air interface remains a great challenge owing to the extreme acoustic impedance mismatch. Few present acoustic metamaterials can be constructed on the free air-water interface for enhancing the acoustic transmission because of the interface instability. Previous strategies overcoming this difficulty were limited in practical usage, as well as the wide-angle and multifrequency acoustic transmission. Here, we report a simple and practical way to obtain the wide-angle and multifrequency water-air acoustic transmission with a tunable fluid-type acoustic metasurface (FAM). The FAM has a transmission enhancement of acoustic energy over 200 times, with a thickness less than the wavelength in water by three orders of magnitude. The FAM can work at an almost arbitrary water-to-air incident angle, and the operating frequencies can be flexibly adjusted. Multifrequency transmissions can be obtained with multilayer FAMs. In experiments, the FAM is demonstrated to be stable enough for practical applications and has the transmission enhancement of over 20 dB for wide frequencies. The transmission enhancement of music signal across the water-air interface was performed to demonstrate the applications in acoustic communications. The FAM will benefit various applications in hydroacoustics and oceanography.


2018 ◽  
Vol 8 (9) ◽  
pp. 1679
Author(s):  
Jie Hu ◽  
Tingting Lang ◽  
Changyu Shen ◽  
Liyang Shao

In this paper, we propose a combined metasurface consisting of an aluminum substrate and an array of TiO2 blocks to achieve a wideband terahertz absorber. We incorporated several similar dielectric blocks with different side length into each unit cell. Each dielectric block could cause magnetic-resonance-inducing absorption effect with different peak wavelengths. Thus, our combined metasurface could achieve wider absorption frequency band than the traditional design when these dielectric blocks were properly designed. The absorption bandwidth could be widened nearly 2.5 times and 5 times compared to a single block case when there were four and nine blocks, respectively, andcouldbe further improved by increasing the number of combinations in structures (variable parameters included number, spacing, dimensions etc.). For both TE00 (the electric fields of the light polarized along the y-axis) and TM00 (the electric fields of the light polarized along the x-axis) polarization states, the absorption bandwidth could be widened effectively; even when the incident angle was 45°, the absorption rate could still reach about 75%. This structure is simple and easy to fabricate, and this design concept can also be used in various other application fields.


Author(s):  
Yizhao Guan ◽  
Hiromasa Kume ◽  
Shotaro Kadoya ◽  
Masaki Michihata ◽  
Satoru Takahashi

Abstract Microstructures are widely used in the manufacture of functional surfaces. An optical-based super-resolution, non-invasive method is preferred for the inspection of surfaces with massive microstructures. The Structured Illumination Microscopy (SIM) uses standing-wave illumination to reach optical super-resolution. Recently, coherent SIM is being studied. It can obtain not only the super-resolved intensity distribution but also the phase and amplitude distribution of the sample surface beyond the diffraction limit. By analysis of the phase-depth dependency, the depth measurement for microgroove structures with coherent SIM is expected. FDTD analysis is applied for observing the near-field response of microgroove under the standing-wave illumination. The near-field phase shows depth dependency in this analysis. Moreover, the effects from microgroove width, the incident angle, and the relative position between the standing-wave peak and center of the microgroove are investigated. It is found the near-field phase change can measure depth until 200 nm (aspect ratio 1) with an error of up to 20.4 nm in the case that the microgroove width is smaller than half of the wavelength.


2019 ◽  
Vol 6 ◽  
pp. 23
Author(s):  
Tsutomu Nagayama ◽  
Atsushi Sanada

We demonstrate broadband transmission-line illusions based on transformation electromagnetics at microwave frequencies by using the distributed full-tensor anisotropic medium. Due to an intrinsic nature of the non-resonant unit cell of the medium, the illusions operate from DC to an upper limit frequency where the homogeneous medium approximation holds. Two-dimensional groove and bump illusion media mimicking scattered waves by an original groove and a bump are designed. Their broadband and incident angle independent operations are confirmed by circuit simulations. The groove illusion medium is implemented on a dielectric substrate with microstrip-line technology, and it is confirmed experimentally by near-field measurements that the illusion medium well mimics scattered waves by the original groove in the broadband frequency range from 2.60 GHz to 4.65 GHz.


Micromachines ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1096
Author(s):  
Jiali Wu ◽  
Xueguang Yuan ◽  
Yangan Zhang ◽  
Xin Yan ◽  
Xia Zhang

A dual-controlled tunable broadband terahertz absorber based on a hybrid graphene-Dirac semimetal structure is designed and studied. Owing to the flexible tunability of the surface conductivity of graphene and relative permittivity of Dirac semimetal, the absorption bandwidth can be tuned independently or jointly by shifting the Fermi energy through chemical doping or applying gate voltage. Under normal incidence, the device exhibits a high absorption larger than 90% over a broad range of 4.06–10.7 THz for both TE and TM polarizations. Moreover, the absorber is insensitive to incident angles, yielding a high absorption over 90% at a large incident angle of 60° and 70° for TE and TM modes, respectively. The structure shows great potential in miniaturized ultra-broadband terahertz absorbers and related applications.


2020 ◽  
Vol 128 (9) ◽  
pp. 093104 ◽  
Author(s):  
Ling Liu ◽  
Wenwen Liu ◽  
Zhengyong Song

Sign in / Sign up

Export Citation Format

Share Document