Investigation on the performance dependence of proton radiated SiGe HBTs with emitter area and temperature

Author(s):  
Yinlong Wei ◽  
Kuibo Lan ◽  
Zhi Wang ◽  
Junqing Wei ◽  
Zhenqiang Ma ◽  
...  

The DC and AC performances of proton radiated Silicon-Germanium (SiGe) Heterojunction Bipolar Transistors (HBTs) with different emitter areas at liquid nitrogen temperature (77 K), room temperature and heating hotplate (393 K) were presented in this work. Performance dependence on the emitter area and temperature was investigated. Results showed that SiGe HBTs with a large emitter area had more damage by proton radiation. Furthermore, the SiGe HBTs showed better tolerance to proton radiation at extreme temperatures than at room temperature. To reveal the underlying mechanism, the radiated SiGe HBTs were modeled based on the device structure and parameters. The electron density, Shockley–Read–Hall (SRH) recombination and carrier mobility were extracted from the device model and demonstrated to have major impacts on the performance dependence of the radiated SiGe HBTs. The results provide useful guidance for the application of SiGe HBTs at extreme environments.

Author(s):  
John T Torvik ◽  
M. Leksono ◽  
J. I. Pankove ◽  
B. Van Zeghbroeck

We report on the fabrication and characterization of GaN/4H-SiC n-p-n heterojunction bipolar transistors (HBTs). The device structure consists of an n-SiC collector, p-SiC base, and selectively grown n-GaN emitter. The HBTs were grown using metalorganic chemical vapor deposition on SiC substrates. Selective GaN growth through a SiO2 mask was used to avoid damage that would be caused by reactive ion etching. In this report, we demonstrate common base transistor operation with a modest dc current gain of 15 at room temperature and 3 at 300°C.


Author(s):  
N. David Theodore ◽  
Donald Y.C Lie ◽  
J. H. Song ◽  
Peter Crozier

SiGe is being extensively investigated for use in heterojunction bipolar-transistors (HBT) and high-speed integrated circuits. The material offers adjustable bandgaps, improved carrier mobilities over Si homostructures, and compatibility with Si-based integrated-circuit manufacturing. SiGe HBT performance can be improved by increasing the base-doping or by widening the base link-region by ion implantation. A problem that arises however is that implantation can enhance strain-relaxation of SiGe/Si.Furthermore, once misfit or threading dislocations result, the defects can give rise to recombination-generation in depletion regions of semiconductor devices. It is of relevance therefore to study the damage and anneal behavior of implanted SiGe layers. The present study investigates the microstructural behavior of phosphorus implanted pseudomorphic metastable Si0.88Ge0.12 films on silicon, exposed to various anneals.Metastable pseudomorphic Si0.88Ge0.12 films were grown ~265 nm thick on a silicon wafer by molecular-beam epitaxy. Pieces of this wafer were then implanted at room temperature with 100 keV phosphorus ions to a dose of 1.5×1015 cm-2.


2004 ◽  
Vol 833 ◽  
Author(s):  
Byoung-Gue Min ◽  
Jong-Min Lee ◽  
Seong-Il Kim ◽  
Chul-Won Ju ◽  
Kyung-Ho Lee

ABSTRACTA significant degradation of current gain of InP/InGaAs/InP double heterojunction bipolar transistors was observed after passivation. The amount of degradation depended on the degree of surface exposure of the p-type InGaAs base layer according to the epi-structure and device structure. The deposition conditions such as deposition temperature, kinds of materials (silicon oxide, silicon nitride and aluminum oxide) and film thickness were not major variables to affect the device performance. The gain reduction was prevented by the BOE treatment before the passivation. A possible explanation of this behavior is that unstable non-stoichiometric surface states produced by excess In, Ga, or As after mesa etching are eliminated by BOE treatment and reduce the surface recombination sites.


Sign in / Sign up

Export Citation Format

Share Document