COMPASES: AN OPTIMIZED DESIGN FOR TESTABILITY SCHEME TO REDUCE THE COST OF TEST APPLICATION USING PARALLEL-SERIAL SCAN DESIGN

2007 ◽  
Vol 16 (03) ◽  
pp. 467-488
Author(s):  
JOSÉ M. SOLANA

A full-scan structure is described, in which the classic single serial scan-path and the parallel-in/serial-out scan (PASE-Scan) designs coexist. It requires only one extra pin and a small hardware overhead with respect to the single serial scan-path approach, and is compatible with a test scheme of this type. A method for the structure design is outlined and a structure-oriented optimized procedure for obtaining the test is proposed which considerably reduces the test application cost with respect to the serial scan case, improving the previous results for parallel-serial designs. The experiments performed with the ISCAS89 benchmarks show average reductions in test length of 60.6% with respect to its full serial scan counterpart and of 58.7%, with respect to a conventional full serial scan test with normal compaction. The advantage of the COMPASES scheme in testing some circuits with multiple PASE-Scan structures is also outlined.

Author(s):  
Yuki YOSHIKAWA ◽  
Tomomi NUWA ◽  
Hideyuki ICHIHARA ◽  
Tomoo INOUE

2019 ◽  
Vol 267 ◽  
pp. 02001
Author(s):  
Liangli Xiao ◽  
Yan Liu ◽  
Zhuang Du ◽  
Zhao Yang ◽  
Kai Xu

This study combines specific high-rise shear wall residential projects with the Revit to demonstrate BIM application processes. The use of R-Star CAD may help to realize the link barrier of the building information model and the structural analysis software PKPM. Sequentially, the information supplement of the structural analysis model is completed by extracting the structural information with the Revit secondary development. By the collaborative design platform based on BIM technology, the paper examines the collision check of structural model, conducts collision analysis on other professional models and modifies the design scheme for conflict points. After the statistics of material usage, an optimized design is proposed. The findings of this paper could contribute to provide some reference for the specific application of BIM in structural design and realize the application of BIM technology in the process of building structure design.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3079 ◽  
Author(s):  
Leopoldo Angrisani ◽  
Francesco Bonavolontà ◽  
Annalisa Liccardo ◽  
Rosario Schiano Lo Moriello

In this paper, a logic selectivity system based on Long Range (LoRa) technology for the protection of medium-voltage (MV) networks is proposed. The development of relays that communicate with each other using LoRa allows for the combination of the cost-effectiveness and ease of installation of wireless networks with long-range coverage and reliability. The realized demonstrator to assess the proposed system is also presented in the paper; based on different types of faults and different locations, the times needed for clearing a fault and restoring the network were estimated from repeated experiments. The obtained results confirm that, with an optimized design of transmitted packets and of protocol characteristics, LoRa communication grants fault management that meets the criteria of logic selectivity, with fault isolation occurring within the maximum allowed time.


Author(s):  
Yuki Yoshikawa ◽  
Tomomi Nuwa ◽  
Hideyuki Ichihara ◽  
Tomoo Inoue

2022 ◽  
Vol 355 ◽  
pp. 02061
Author(s):  
Jiang Li ◽  
YongBin Li ◽  
Jinhua Tan ◽  
Zhimin Yang

Fully enclosed noise barrier has been used to prevent and control traffic noise pollution because of its effectiveness. It has become the best solution for controlling environmental noise of high-rise buildings from expressways, urban viaducts and railways that cross the crowded downtown area. However, its high cost has become an important retarding factor on its application and popularization, so reducing the cost become an urgent problem. The research theory, structure frame, sound absorbing and insulating materials are investigated for the fully enclosed noise barrier, so as to provide technical solutions for optimizing the design scheme and reducing the construction cost.


Author(s):  
Qi Ye ◽  
Shanshan Cheng ◽  
Boksun Kim ◽  
Keri Collins ◽  
Gregorio Iglesias

Abstract This paper summarizes the assessment of the structural analysis and design of a floating foundation for offshore floating wind turbine (FWT) based on DNVGL standard and Eurocode in terms of economy and reliability. The wind loads are calculated using empirical equations. The wave loads are obtained and verified using various methods including hand calculation, AQWA and Flow-3D. It is found that the shell thickness could be reduced significantly by introducing the stiffeners (stringer or ring), which can decrease the weight of the hull and lower the cost. While DNVGL and Eurocode yield similar design solutions if using plane shell structures, Eurocode significantly underestimates the buckling resistance of stiffened cylindrical shells.


2015 ◽  
Vol 9 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Ling Liu

In this paper, the CNC machine spindle after remanufacturing is researched as an object on uncertain constraints. At first, the equations of the machine spindle motion based on beam theory are established. This article uses Finite Element Analysis (FEA) function to analyze the remanufacturing of machine spindle system in the free mode and while static and the actual working conditions of multi-modal analysis of the spindle’s constraints state. By analysis it is known that the spindle vibrates and deforms at high speeds, and some assumptions are used to improve the unreasonable parameters, so that the spindle’s dynamic performance is more stable and reliable in the conditions of the high speed and heavy load operation. In addition, simplifying the cost and shortening the design cycle are the part of the analysis. The results provides an optimized design and a basis for precision control for the heavy-duty mechanical spindle system or machine spindle system.


Sign in / Sign up

Export Citation Format

Share Document