HISTORY AND PROGRESS OF THE TOW–THOMAS BIQUADRATIC FILTER PART II: OTRA, CCII, AND DVCC REALIZATIONS

2008 ◽  
Vol 17 (05) ◽  
pp. 797-826 ◽  
Author(s):  
AHMED M. SOLIMAN

The realization of the Tow–Thomas (TT) circuit using the Operational Transresistance Amplifier (OTRA) is reviewed. The circuit employs two OTRA, and all passive elements are floating as the original Tow–Thomas circuit. The Current Conveyor (CCII) TT circuits are reviewed next. The progress in the realization of the TT circuit using CCII is demonstrated clearly by summarizing eight different circuits. One of the circuits has the advantage of very high input impedance using all grounded resistors and capacitors. The Differential Voltage Current Conveyor (DVCC) as the active building block in realizing the TT circuit is also considered. Finally, current mode TT circuits using balanced output CCII are summarized. Top Spice (level 49), simulation results using technology SCN 05 feature size 0.5 μm from MOSIS vendor: AGILENT are included to demonstrate the magnitude and phase frequency response of the TT circuits. Additional simulation results for the total power dissipation, total harmonic distortion, intermodulation IM3, input and output referred noise spectral densities are also included for comparison purposes.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jiun-Wei Horng ◽  
Zih-Yang Jhao

A voltage-mode universal biquadratic filter using a differential voltage current conveyor (DVCC), two capacitors, and two resistors is presented. The proposed circuit has four input terminals and three output terminals and can realize all the standard filter functions, which are lowpass, bandpass, highpass, notch, and allpass filters, without changing the circuit topology. Three simultaneous output filter responses can be obtained from some derived filter types. The proposed circuit employs only one DVCC that simplifies the configuration.


2013 ◽  
Vol 22 (09) ◽  
pp. 1340001 ◽  
Author(s):  
JIUN-WEI HORNG ◽  
TO-YAO CHIU ◽  
CHING-PAO HSIAO ◽  
GUANG-TING HUANG

A current-mode universal biquadratic filter with three input terminals and one output terminal is presented. The architecture uses two current conveyors (CCs), two grounded capacitors and two grounded resistors; and can realize all standard second-order filter functions — highpass, bandpass, lowpass, notch and allpass. Moreover, the circuit still offers the following advantage features: very low active and passive sensitivities, using of grounded capacitors and resistors which is ideal for integrated circuit implementation, without requirements for critical component matching conditions and very high output impedance. The workability of the proposed circuit has been verified via HSPICE simulations using TSMC 0.18 μm, level 49 MOSFET technology.


2007 ◽  
Vol 16 (04) ◽  
pp. 627-639 ◽  
Author(s):  
VARAKORN KASEMSUWAN ◽  
WEERACHAI NAKHLO

A simple 1.5 V rail-to-rail CMOS current conveyor is presented. The circuit is developed based on a complementary source follower with a common-source output stage. The circuit is designed using a 0.13 μm CMOS technology and HSPICE is used to verify the circuit performance. The current conveyor exhibits low impedance at terminal X (7.2 Ω) and can drive ± 0.6 V to the 300 Ω with the total harmonic distortion of 0.55% at the operating frequency of 3 MHz. The voltage transfer error (between the Y and X terminals) and current transfer error (between the X and Y terminals) are small (-0.2 dB). The power dissipation and bandwidth are 532 μW and over 300 MHz, respectively.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A universal voltage-mode filter (VM) and a current-mode filter (CM) based on recently proposed active building block, namely, differential voltage current conveyor transconductance amplifier (DVCCTA) are proposed. Both the circuits use a single DVCCTA, two capacitors, and a single resistor. The filters enjoy low-sensitivity performance and low component spread and exhibit electronic tunability of filter parameters via bias currents of DVCCTA. SPICE simulation using 0.25 μm TSMC CMOS technology parameters is included to show the workability of the proposed circuits.


2009 ◽  
Vol 18 (04) ◽  
pp. 629-645 ◽  
Author(s):  
AHMED M. SOLIMAN

A review of the two types of circulators using Operational Amplifiers (OA) with detailed comparison is given. Novel active circulator circuits using Current Conveyors (CCII) and Current Feedback Operational Amplifiers (CFOA) and Differential Voltage Current Conveyor (DVCC) are introduced. The proposed CCII circulator circuit uses six CCIIs and three floating resistors. Two different circulator types using the CFOA are given. A circulator circuit which uses three DVCCs and has the advantage of using three grounded resistors is also introduced. Spice simulation results using 0.5 μm CMOS transistors are included to support the theoretical analysis and demonstrate comparisons among the different types of circulators.


2008 ◽  
Vol 17 (02) ◽  
pp. 183-190 ◽  
Author(s):  
S. RAMAKRISHNAN ◽  
K. T. LAU

In this paper, a newly improved dynamic current mode logic (I-DyCML) is proposed to achieve low power dissipation. The principle used in I-DyCML is the reduction of the leakage current by turning the part of the circuit to "standby mode", when not in use, while achieving lower dynamic power during the active mode. HSpice simulations show that I-DyCML saves up to 15–30% of the total power dissipation when compared to Dynamic Current mode logic.


1995 ◽  
Vol 18 (3) ◽  
pp. 145-149 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Aamir Alam Farooqui

A new universal active current-mode filter with single input and five outputs is presented. The proposed filter avoids the use of external feedback in any part of the circuit and uses grounded resistors. The proposed circuit can simultaneously realize lowpass, highpass, bandpass, allpass, and notch biquadratic filter functions.


2007 ◽  
Vol 16 (02) ◽  
pp. 221-231 ◽  
Author(s):  
YUH-SHYAN HWANG ◽  
JIANN-JONG CHEN ◽  
JEN-HUNG LAI

A fully differential third-order very high frequency (VHF) Gm–C filter based on linear transformation (LT) techniques is presented in this paper. The systematic design method and the procedure are developed to realize LT Gm–C filters efficiently. A third-order Butterworth lowpass filter embedded bandgap and bias circuits with 200 MHz cutoff frequency is implemented in the TSMC 0.18 μm 1P6M process. The total harmonic distortion (THD) of the proposed filter is - 43 dB with input signal 0.5 V p-p and output loading capacitance 1 pF at 200 MHz. Power dissipation is 9.77 mW under 1.8 V supply voltage. Its core area occupies 0.188 × 0.1862. Post simulation and experimental results that confirm the theoretical analysis are obtained. Furthermore, the proposed circuits can be extended to high-order Chebychev and elliptic filters.


Sign in / Sign up

Export Citation Format

Share Document