High Performance Voltage-Mode Tunable All-Pass Section

2015 ◽  
Vol 24 (06) ◽  
pp. 1550080 ◽  
Author(s):  
S. Maheshwari ◽  
D. Agrawal

This paper presents a voltage-mode (VM) tunable all-pass section, employing a grounded capacitor and a newly introduced current conveyor with an extra X stage. The proposed all-pass filter uses grounded capacitor as the only passive component and benefits from high input and low output impedance. The proposed circuit exhibits eight performance features without trade-offs, as compared to carefully chosen 25 published works. The functionality of the proposed element is verified through PSPICE simulation using 0.25-μm process parameters. An application of second order is also incorporated.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Parveen Beg

This paper presents a voltage mode cascadable single active element tunable first-order all-pass filter with a single passive component. The active element used to realise the filter is a new building block termed as differential difference dual-X current conveyor with a buffered output (DD-DXCCII). The filter is thus realized with the help of a DD-DXCCII, a capacitor, and a MOS transistor. By exploiting the low output impedance, a higher order filter is also realized. Nonideal and parasitic study is also carried out on the realised filters. The proposed DD-DXCCII filters are simulated using TSMC the 0.25 µm technology.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sudhanshu Maheshwari ◽  
Bhartendu Chaturvedi

This paper presents some additional high input low output impedance analog networks realized using a recently introduced single Dual-X Current Conveyor with buffered output. The new circuits encompass several all-pass sections of first- and second-order. The voltage-mode proposals benefit from high input impedance and low output impedance. Nonideality and sensitivity analysis is also performed. The circuit performances are depicted through PSPICE simulations, which show good agreement with theory.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450077 ◽  
Author(s):  
JITENDRA MOHAN ◽  
SUDHANSHU MAHESHWARI

To extend the existing knowledge on first-order voltage-mode all-pass filters, this paper presents two novel first-order voltage-mode all-pass sections, each employing single fully differential second-generation current conveyor (FDCCII) being used as the newly obtained fully differential voltage conveyor (FDVC), a resistor and a grounded capacitor. Both the proposed circuits possess high-input and low-output impedance feature, which makes the proposed circuits ideal for voltage-mode systems. Non-ideal study along with simulation results is given for validation.


2007 ◽  
Vol 2007 ◽  
pp. 1-5 ◽  
Author(s):  
Sudhanshu Maheshwari

This paper presents two new first-order voltage-mode all-pass filters using a single-current differencing buffered amplifier and four passive components. Each circuit is compatible to a current-controlled current differencing buffered amplifier with only two passive elements, thus resulting in two more circuits, which employ a capacitor, a resistor, and an active element, thus using a minimum of active and passive component counts. The proposed circuits possess low output impedance, and hence can be easily cascaded for voltage-mode systems. PSPICE simulation results are given to confirm the theory.


2008 ◽  
Vol 17 (05) ◽  
pp. 827-834 ◽  
Author(s):  
ERKAN YUCE ◽  
KIRAT PAL ◽  
SHAHRAM MINAEI

In this paper, a novel circuit for realizing voltage-mode first-order and second-order all-pass filter responses as well as second-order notch filter response depending on the passive component choice, is presented. This circuit has high input impedance; thus, it is easy to cascade the introduced filter with other voltage-mode topologies. Also, it uses a single Variable Gain Current Conveyer — VGCCII and only grounded capacitors. SPICE simulation results based on 0.35 μm TSMC CMOS technology parameters are given to confirm the theory.


Author(s):  
Jitender Jitender ◽  
Jitendra MOHAN ◽  
Bhartendu CHATURVEDI

Two novel resistorless structures of a first-order voltage-mode all-pass filter are presented in the paper. Both the structures employ a fully differential second-generation current conveyor (FDCCII) as the primary active element, in addition to an active resistor. A grounded capacitor is the only passive component used in both the structures. In both the structures, CMOS realization of FDCCII is utilized; hence, these structures are CMOS compatible. Some of the other highly demanded features possessed by the presented all-pass structures are: a simple circuit topology, electronic tunability, high input impedance, constraint-free operation in terms of passive component matching, and low sensitivity figures. The theoretical performances under ideal and non-ideal scenarios are presented in detail. Furthermore, the proposed idea is extended to an Nth-order voltage-mode all-pass filter and a quadrature oscillator to explore some of the possible applications. PSPICE simulation results verify the theoretical claims of the presented all-pass filters. HIGHLIGHTS Two novel resistorless structures of first-order all-pass filters based on fully differential second-generation current conveyor are presented Performance of the proposed structures are thoroughly described in ideal and non-ideal scenarios Theoretically described details of the proposed structures are verified by carrying simulations on PSPICE using 180 nm CMOS technology An Nth-order all-pass filter and a quadrature oscillator are also presented as applications GRAPHICAL ABSTRACT


2014 ◽  
Vol 68 (12) ◽  
pp. 1239-1246 ◽  
Author(s):  
Wilas Ninsraku ◽  
Dalibor Biolek ◽  
Winai Jaikla ◽  
Surapong Siripongdee ◽  
Peerawut Suwanjan

Optik ◽  
2017 ◽  
Vol 128 ◽  
pp. 14-25 ◽  
Author(s):  
Surasak Sangyaem ◽  
Surapong Siripongdee ◽  
Winai Jaikla ◽  
Fabian Khateb

2013 ◽  
Vol 22 (01) ◽  
pp. 1250065 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
JITENDRA MOHAN ◽  
DURG SINGH CHAUHAN

This paper presents two new first-order voltage-mode (VM) cascadable all-pass (AP) sections, employing two differential voltage current conveyors (DVCCs) and three grounded passive components. Both circuits possess high input and low output impedance, which makes them easily cascadable. Non-ideality aspects and parasitic effects are also studied. As an application, a quadrature oscillator is designed using the proposed circuit. The proposed circuits are verified through PSPICE simulations using 0.5 μm CMOS parameters.


Sign in / Sign up

Export Citation Format

Share Document