Novel Meminductor Emulators Using Operational Amplifiers and their Applications in Chaotic Oscillators

Author(s):  
Aneet Singh ◽  
Shireesh Kumar Rai

This paper presents six different meminductor emulator circuits based on operational amplifiers. Five circuits of meminductor emulators have been proposed using two operational amplifiers, one memristor, three resistors and one capacitor, whereas the sixth circuit uses two operational amplifiers, two memristors, one resistor and two capacitors. All circuits of the proposed meminductor emulators are very simple over most of the realizations of meminductor emulators in the literature. The behaviors of meminductor emulators are satisfactory over a wide range of frequencies. The proposed configurations of meminductor emulators have been simulated by the LTspice tool. The SPICE models of both operational amplifier (AD711) and memristor have been used for simulation. The workability of the proposed meminductor emulators has also been verified using the basic and well-known structure of operational amplifier. In addition, the pinched hysteresis loop obtained by the simulation results of meminductor emulator has been achieved by the experimental results as well. Chaotic oscillator has been designed using the proposed meminductor emulator to prove the worthiness of the design.

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
B. J. Maundy ◽  
A. S. Elwakil ◽  
C. Psychalinos

Two novel nonlinear circuits that exhibit an all-positive pinched hysteresis loop are proposed. These circuits employ two NMOS transistors, one of which operates in its triode region, in addition to two first-order filter sections. We show the equivalency to a charge-controlled resistance (memristance) in a decremental state via detailed analysis. Simulation and experimental results verify the proposed theory.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050247 ◽  
Author(s):  
Hasan Sozen ◽  
Ugur Cam

Meminductor is a nonlinear two-terminal element with storage energy and memory ability. To date, meminductor element is not available commercially as memristor and memcapacitor are. Therefore, it is of great significance to implement a meminductor emulator for breadboard experiment. In this paper, a flux-controlled floating/grounded meminductor emulator without a memristor is presented. It is built with commercially available off-the-shelf electronic devices. It consists of single operational transconductance amplifier (OTA), single multiplier, two second-generation current conveyors (CCIIs), single current-feedback operational amplifier (CFOA) and single operational amplifier. Using OTA device introduces an additional control parameter besides frequency and amplitude values of applied voltage to control the area of pinched hysteresis loop of meminductor. Mathematical model of proposed emulator circuit is given to describe the behavior of meminductor circuit. The breadboard experiment is performed using CA3080, AD844, AD633J and LM741 for OTA, CCII–CFOA, multiplier and operational amplifier, respectively. Simulation and experimental test results are given to verify the theoretical analyses. Frequency-dependent pinched hysteresis loop is maintained up to 5 kHz. The presented meminductor emulator tends to work as ordinary inductor for higher frequencies.


2016 ◽  
Vol 26 (02) ◽  
pp. 1750029 ◽  
Author(s):  
Zehra Gulru Cam ◽  
Herman Sedef

In this paper, a new floating analog memristance simulator circuit based on second generation current conveyors and passive elements is proposed. Theoretical derivations are presented which decribe the circuit characteristics. The hardware of proposed simulator circuit is built using commercially available components. Theoretical derivations are validated with PSPICE simulation and experimental results. Performance of circuit was tested with simple example circuits. All results show that proposed simulator circuit provides frequency dependent pinched hysteresis loop and nonvolatility features. Exciting frequency, minimum and maximum memristance values and memristance range can be adjustable with simple passive element values. Simulator circuit has a frequency range of 1[Formula: see text]Hz to 40[Formula: see text]kHz.


Author(s):  
Nisha Yadav ◽  
Shireesh Kumar Rai ◽  
Rishikesh Pandey

In this paper, new memristor-less meminductor emulators have been proposed using voltage differencing transconductance amplifier (VDTA), current differencing buffered amplifier (CDBA) and a grounded capacitor. The proposed decremental/incremental meminductor emulators have been realized in both grounded and floating types of configurations. In the proposed meminductor emulators, analog multiplier, memristor and passive resistors are not used which result in simpler configurations. The pinched hysteresis loops are maintained up to 2[Formula: see text]MHz for both decremental and incremental configurations of meminductor emulators. The behaviors of decremental and incremental meminductor emulators have been analyzed after applying input pulses. The obtained results verify the performances as decremental and incremental meminductor emulators. The simulation results have been obtained using Mentor Graphics Eldo simulation tool with 180[Formula: see text]nm CMOS technology parameters. To verify the performances of the proposed meminductor emulators, adaptive learning circuit and chaotic oscillator have been designed. The performances of the proposed meminductor emulators are compared with other meminductor emulators reported in the literature.


2012 ◽  
Vol 59 (9) ◽  
pp. 607-611 ◽  
Author(s):  
Zdeněk Biolek ◽  
Dalibor Biolek ◽  
Viera Biolkova

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Chaojun Wu ◽  
Ningning Yang ◽  
Cheng Xu ◽  
Rong Jia ◽  
Chongxin Liu

Memristive characteristics in three-phase diode bridge rectifier circuit are proposed in this paper. The conduction of the diodes is discussed and the characteristics of the pinched hysteresis loop are analyzed by both numerical simulations and circuit simulations. The hysteresis loops of each phase not only are pinched at the origin but also have the other two intersection points in the first quadrant and the third quadrant when three-phase bridge rectifier circuit is running under normal operation. Other conditions are also discussed when a variety of faults conditions occur. The simulation results verify that the three-phase bridge rectifier circuit can be described as a generalized memristor element during several operation states.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Kristopher J. Chandía ◽  
Mauro Bologna ◽  
Bernardo Tellini

We study a memristive circuit with included parasitic elements, such as capacitance and inductance. In the multiple-scale scheme, we analytically show how the parasitic elements affect the voltage and the current. Finally, we provide an analytical expression for the intersection point coordinates, through which we discuss the functional behavior of the pinched hysteresis loop versus the operating frequency and the parasitic elements.


2013 ◽  
Vol 278-280 ◽  
pp. 1081-1090 ◽  
Author(s):  
Dalibor Biolek ◽  
Zdenek Biolek ◽  
Viera Biolkova ◽  
Zdenek Kolka

The pinched hysteresis loop belongs to the fingerprints of the so-called mem-systems, their well-known special cases being memristors. The memory effect of the system is determined by the area of the curve lobes which gradually decrease with increasing repeating frequency of the excitation signal. The paper describes a method for automated computation of the above areas via the commonly utilized OrCAD PSpice simulation software with the help of special measuring functions of the PROBE postprocessor. The usefulness of the method is illustrated on an example of the analysis of a TiO2 memristor.


Sign in / Sign up

Export Citation Format

Share Document